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An essential component of application modernization is the decomposition of monolith architectures to microservices, which has
become a standard for designing enterprise applications. Various recommendation tools have been developed to facilitate this task but
they may produce inaccuracies or suggestions that misalign with developers’ intentions. While human-centered design has been
adopted across various research areas to examine interactions between human and AI and create tools that harness their respective
strengths, its adoption in the field of microservice recommendation has been largely overlooked. In this work, we examine the current
challenges faced by developers when using microservice recommendation tools and propose UI features that strive to improve their
interactions. We conducted interviews with 8 software engineers that sparked discussions about information overload, the importance
of communicating uncertainty and opportunities for human-AI collaboration. Based on our findings, we developed and evaluated an
interactive mixed initiative interface that supports the design of microservices. We report our observations and discuss the importance
of human-centered research in application modernization.
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1 INTRODUCTION

One crucial aspect of application modernization is the decomposition of monolith architectures to microservices, a
task which enables businesses to better manage, deploy, and scale their applications. Since manual approaches are
time-consuming and expensive, using a tool that provides partitioning recommendations is often a more feasible
approach for developers. While these tools have become increasingly accurate due to the rapid advancements in AI,
they almost always operate at less than perfect accuracy and can produce undesirable outcomes such as distributed
transactions, or recommendations which may deviate from developers’ intentions. Studies have shown that the vast
majority of users make changes to partitions recommended by microservice tools [11, 21].

Across a number of applications, human-AI collaborative approaches have been used to refine imperfect systems.
Prior work has demonstrated their ability to enhance speed, accuracy, and decision-making across various domains.
Numerous mixed-initiative tools have been developed across diverse applications, ranging from medical decision
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Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request permissions from permissions@acm.org.
© 2018 Association for Computing Machinery.
Manuscript submitted to ACM

1

https://doi.org/XXXXXXX.XXXXXXX


Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Melanie Bancilhon, Rahul Krishna, and John Rofrano

support to data labeling. Within the realm of visual analytics, mixed-initiative visualizations have played a crucial
role in enabling seamless and intuitive interactions with algorithms, thereby facilitating more effective reasoning. A
number of studies have shown that the design choices of interfaces and tools utilized to support human-AI interactions
significantly impacts usability, comprehension, and overall performance [22].

Despite prior work demonstrating the benefits of human-AI collaboration, their adoption in the realm of microservice
recommendation still remains unexplored. Our research is focused on gaining insights into the current challenges faced
by software developers when using microservice recommendation tools. Furthermore, we aim to identify user interface
(UI) features that can enhance human-AI interaction and inform the design of a mixed-initiative tool for microservice
recommendation.

We conducted formative interviews with 8 industry professionals and through a thematic analysis, and identified
three common themes: information overload, granularity and explainability. Our interviewees expressed the need of
seeing a more granular view of their application while highlighting a concern for information overload, which can
result in an overcrowded display, making it confusing and difficult to navigate. Although they deemed useful to view
the algorithm’s confidence, they found it unnecessary to receive explanations about the algorithm’s mechanisms. We
propose a human-in-the-loop framework that augments existing AI-based algorithm CARGO [17] and serves as a
usage scenario to frame our design and evaluation. Then, we design an interactive mixed-initiative interface with
UI components that strive to address the pain points raised by users in the formative interviews. We evaluated our
interface via semi-structured interviews with the same 8 participants, where we asked them to complete a set of tasks
using a think-aloud protocol to observe how they understand, use and interact with our various UI components. Users
expressed enthusiasm for the functionality of the various features implemented, and were able to successfully explore
classes based on the uncertainty of their partition assignment, understand how the uncertainty value was assigned to
classes, use filters and search functions, alternate between class and method displays and split methods across classes.
However, participants failed to correctly interpret in-the-loop partition recommendations, and failed to correctly detect
methods in our graphical display. We discuss the implications of these findings in relation to our design choices and
argue for the development of collaborative microservice recommendation algorithms.

The contributions of our research includes the following:

• We gain understanding into practitioner workflow and identify challenges when using microservice recommen-
dation tools.

• We propose a human-in-the-loop framework to augment existing AI-based algorithm CARGO to capture user
interactions.

• We develop and evaluate an interface that improves human-AI interaction and supports their collaboration for
microservice recommendation.

• We discuss the implications of our approach and argue for more human-centered research in application
modernization.

2 RELATEDWORK

Our work is situated within HCI research that strives to understand user needs to inform the design of AI-powered
tools. In this section, we review and discuss two areas relevant to our work: the application of human-AI collaboration
to microservice recommendation and the design of mixed-initiative interfaces.
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2.1 Human-AI Collaboration for Microservice Recommendation

Microservice recommendation tools are often a more feasible approach to decomposing a monolith to microservices
compared to manual approaches, which are time-consuming and expensive. There exists a number of patterns for
decomposing an application, one of the most prominent being identifying functional boundaries in the application that
are also loosely coupled to other functionalities in the code. Several applications AI-guided partitioning to implement
this pattern [1, 9, 11]. For example, Mono2Micro [11] performs static analysis of the application to obtain structural
information and data dependencies, which are then analyzed by an AI engine to create partitioning of application
classes that considers business use case similarity and call dependencies. Another algorithm, which also takes into
account database dependencies, is CARGO, short for Context Sensitive Label Propagation [17]. CARGO builds upon the
principles of Label Propagation Algorithm (LPA) to build a System Dependency Graph (SDG) used to create highly
accurate partitions [17]. It has been shown to mitigate distributed transactions, improve run-time performance and
performance on architectural metrics compared to other algorithms that only consider functional boundaries. Several
other microservice recommendation techniques are reviewed in a survey by Ponce et al [19].

Although they are more efficient, microservice recommendation algorithms can sometimes produce inaccuracies
such as distributed transactions, or partitions that do not align with expert’s intentions. Kalia et al. interviewed 20
professionals about the usefulness of Mono2Micro and found that throughout their experience using Mono2Micro, only
7% of users did not make any changes to the algorithm’s recommendations, while 30.8% made a few minor changes,
38.5% made some minor and some major changes and 23.1% made many major changes [11]. The most prevalent changes
to Mono2Micro’s recommendations included (in order of most to least prevalent) moving classes, adding new classes,
creating new partitions and renaming partitions. In order to leverage the respective strengths of human and AI, various
domains have proposed human-AI collaborative systems. Several studies have shown that human-AI collaboration can
improve speed [2], accuracy [2] and decision-making [3]. For example, Ashktorab et al. found that AI-assistance in
data labeling tasks, in which a human annotator makes decisions for which labels to apply to data, sped up the data
labeling process and also increased the accuracy of data labelers [2]. To the best of our knowledge, this work is the first
to propose a human-AI framework for microservice recommendation.

2.2 Designing Mixed-Initiative Interfaces

Designing interfaces and tools that support human-AI collaboration is not trivial. Literature across disciplines has
demonstrated that both the nature and format of the information communicated can impact how users perceive
and interact with various systems. In the area of explainable AI, several studies have shown that different types AI
explanations may naturally show distinctive impact on human decision makers [Wang et al]. Researchers in the field of
visual analytics have developed various tools that strive to facilitate interactions between human and machines for a
number of tasks [4–8, 10, 12, 14, 18]. Monadjemi et al. found that when interacting with a visualization in a guided
data discovery task, participants tended to ignore recommendations despite their relevance to the task. The authors
argued that the presentation style of the recommendation might have caused this effect and highlight the importance of
investigating different ways of presenting suggestions [15]. Whitworth et al. argues that making suggestions obtrusive
can cause users to ignore or disable them, a known example being prior assistance agent Clippy built by Microsoft
[24]. While investigations into the design of human-AI collaborative tools span various applications, less attention has
been given to the area of application modernization. Some studies have focused on code translation [20, 22, 23]. For
example, Weisz et al. interviewed a group of software engineers to examine the effect of UI features on the adoption of
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AI-generated code translation [22]. They found that overall, participants most valued the designs where translation
confidence was communicated and asserted that the latter was critical in prioritizing review effort [22].

When it comes to migrating applications from monolith to microservices, several tools use graphical user interfaces
and visualizations to assist users in this task [11? ]. For example, Nakazawa et al. has developed a tool to design
microservices with the monolith-first approach [16] that uses a node-link diagram. Another example is enterprise tool
Mono2Micro [11] that uses interactive visualizations. Despite their use of graphical user interfaces and visualizations,
their design choices are most often arbitrary. To the best of our knowledge, there exists no studies on the design of
human-AI collaboration for microservice recommendation.

3 FORMATIVE END USER INTERVIEWS

In order to better understand current workflow and pain points with current microservice recommendation tools, we
conducted formative interviews with knowledge workers responsible for microservice development or managing teams
that develop microservices at an enterprise level. The questions spanned the following themes: expert role and tasks,
experience with refactoring, experience with tool features and interactions, opinions on an ideal microservice tool.
We expanded on the level of detail they desired when partitioning code, the UI interactions and features. Two of the
authors conducted a thematic analysis, consisting of identifying, annotating and extracting common responses and
themes from the interviews. They reviewed meeting recordings and transcripts and identified high-level themes, and
refined them through collaborative discussions. They summarize their main insights in this section.

We recruited 8 full-time software engineers experts within our organization that have at least some experience with
microservice recommendation tools. Participants represented a diverse range of roles across various organizations
which are listed in table 1.

ID Role Organization Manager?
P1 Software Engineer Software N
P2 Software Engineer Software N
P3 Lead Modernization Architect Finance & Operations N
P4 Lead Modernization Architect Finance & Operations N
P5 Integration Technical Specialist Sales N
P6 Application Architect Consulting N
P7 Senior Technical Staff Member Finance & Operations Y
P8 Senior Technical Staff Member Global Sales N

Table 1. The table records our interviewees’ ID, role, organization name and whether they are a manager or not.

3.1 Information Overload

A prominent topic that was brought up by participants is the issue of information overload, especially for large
applications. P6 mentioned that their application "had a lot of classes and it was hard to figure out what was going on". P3
mentioned that the size of the application is an important contributor to the information overload problem "If you have

a three microservice application, it’s consumable, but when you have like a fifty or, you know, sixty it starts to get really

confusing. So having more summary pages, you know, have things in red like problem here, green here, you know".
They also brought up the usefulness of filtering several components of the view, such as the edge types and edge

weights. P1 and P2 mentioned the usefulness of the table view and they can more easily find a class compared to the
4
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graph view, where they have to hover over each node. P2 stated that "In the table view, I can search for a class more

easily but in the graph view, I have to hover over every node to find a class".
The topic of information overload has been extensively studied in the visualization community [cite]. One of the

most influential mantra by Schneiderman is "overview first, zoom and filter, details on demand".

3.2 Customization and granularity

We asked users questions about the level of granularity at which they would prefer to see their application. One theme
that was brought up was the importance of database interactions, which is at the center of the CARGO algorithm. P4
stated that "you can have a really good microservice design but it can all fall apart if you don’t design how you interact

with the database correctly".
In their current application, users can see their applications in the form of classes.When addressing our question about

the desired level of granularity, responses varied. However, it is important to highlight the interplay between desired
level of granularity and the information overload issue. Several participants P2 mentioned that "for my application,

classes are granular enough. Showing methods would be too messy". They highlighted that the user perhaps could opt
into seeing method as long as they don’t overcrowd the display. P3 mentioned that "Seeing methods would be useful as

long as it’s kind of like look here in this class, there’s some problems in here and then you can open it up. See where the

problems are like, it allows you to drill down, but let people opt into that complexity". We posit that the desired level of
granularity depends on several factors including the size of the application, level of familiarity with the application and
experience of the developer. Prior work highlights the potential benefit of creating partitions at the function level [16].

3.3 Considerations for Explainability

This line of questioning was highly influenced by Weisz et al. [22], who inquired about developers acceptance and
utility of imperfect AI. While different microservice recommendation tools employ different clustering strategies, most
of them including their current industry tool are deterministic. Moreover, the current microservice tool does not provide
the user with meaningful partition names based on its strategy. Therefore, we asked participants to comment on the
importance and utility three aspects of microservice recommendation: (1) communicating uncertainty, (2) meaningful
partition names and description and (3) comprehension of AI mechanics.

In general, participants were enthusiastic about a system that shows classification confidence. As stated by P1
"showing uncertainty for classes would be useful cause you can just ignore some and focus on the borderline cases".
Similarly, P4 mentioned the importance of indicating where there is a problem in the partitioning. P2 mentioned that
"If you could say you are partitioning this together because they are part of this functionality, and then give me a short

explanation of what it is, I think that would be very useful". When it comes to the importance of assigning meaningful
partition names and definition, once again we found that responses varied based on the size and the developer’s
familiarity with the application. While P1 mentioned that he is so familiar with his application that he can just glance
at a partition and tell which business use case it represents, other users stated that it would be a very useful feature.
P2 mentioned "It would be very useful to see partition name and description. It would help me understand why they put

some classes in this partition." Users considered the comprehension of AI mechanics to be unnecessary and potentially
confusing.
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4 USAGE APPLICATION: HUMAN-IN-THE-LOOPWITH CARGO

As mentioned in 2.1, an array of algorithms have been developed to recommend functional partitions in monolithic
code. We posit that these algorithms would benefit from leveraging the expertise that developers have about their
applications to improve the accuracy of their recommendations. In this section, we demonstrate how current algorithms
can be augmented into collaborative tools by proposing a framework for CARGO, an algorithm recently developed by
Nitin et al. [17] which leverages AI techniques to improve the partitioning quality of current algorithms.

Overview of CARGO. CARGO creates microservices using three steps (1) Initiation with seed labels, (2) Initial
Label Propagation Algorithm (LPA) and (3) Iterative LPA over context snapshots. CARGO provides the flexibility of
either being fully unsupervised and assign seed labels randomly, or semi-supervised, by providing seed labels from an
existing partition assignment. A LPA is then applied to the program dependency graph’s transactional snapshots and
seed labels are factored in. The nodes of the program dependency graph represent the methods and database tables in
the application. The LPA is then iteratively applied to context snapshots to obtain partition assignments for methods.
Method assignments are then aggregrated to obtain class assignments. While in-depth knowledge is not required for
the purpose of this framework, more information can be found in the paper [17].

Human-in-the-loop Scenario. When using a microservice tool, a software developer first starts the process of
decomposing their monolith by exploring the partitions recommended by the underlying algorithm. While level of
granularity at which portions of the code base are partitioned vary across tools, most existing tools operate at the class
level for easier manageability. CARGO assigns partitions to methods, which are then aggregated into class partitions. A
user is likely to identify some misassigned classes based on their knowledge of the application. They start editing the
recommendation by moving a class from one partition to another. In our human-in-the-loop framework, we propose to
capture this interaction and pass it as a seed label in step (1). CARGO will then generate a new set of recommendations
based on the user’s expertise of the application. If the generated assignments differ from the original assignments, new
assignments will get suggested to the user, who can choose to approve or reject the recommendation, thus creating a
closed feedback loop between the user and the algorithm. Figure 1 illustrates our proposed framework for CARGO.

Fig. 1. Our proposed human-in-the-loop framework for CARGO [17]
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Fig. 2. An overview of CARGO’s interface. By selecting the filter icon , the filter menu pops up at the top of the page. The user
can filter the volume of calls between nodes using the edge weight filter and the nature of calls between nodes using the edge
type filter . The user can search for a class or data table using the search bar , which will select the relevant node as shown
in . In , the interface shows a selected partition and its properties in the info bar , which includes its name, description,
number of classes and class names. The user can hover over a node to display a tooltip with its name, partition and confidence .
shows the interface when a class is selected . Properties of the selected class appear in the info bar, including a bar chart indicating
its methods assigned partition and color coded draggable list of its methods . The user can choose to split the class by using the
add class button , dragging methods from the method list into the new class and clicking on the split class button . Users can
also have a graphical overview of the methods by right clicking on a class node. Methods will appear as smaller circles within their
corresponding partitions . If the recommendation toggle is on , the user can receive suggestions as they start moving classes
from one partition to another .

5 DESIGN CONSIDERATIONS & USER INTERFACE

Based on our findings from the formative interviews, we developed a graphical user interface with features that strive
to address user pain points and needs reported in Section 3. To provide better contextual understanding and evaluation,
we anchor our user interface on our human-in-the-loop framework for CARGO, described in 4. While our interface
does not contain all the functionalities of a comprehensive microservice recommendation tool might have, it serves as a
prototype to identify how users interact with the desired features.

5.1 Overview

Walkthrough: Priya starts using our interface to refactor her application to microservices.

As shown in figure 2, classes, databases and their partitions are represented through a node-link diagram, where
rectangles represent partitions, circles represent classes and diamonds represent tables. Classes are contained within
different partitions, whose labels can be seen on the screen, and datatables are contained with the "data" partition.
Connections between classes, datatables, and classes and datatables can be seen are represented through links. The user
can hover over a node to view its name, partition and assignment confidence. We chose to use a node-link diagram to
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represent partitions to keep the design consistent with current microservice recommendations tools to match users
current mental model and minimize their learning curve.

On the left side, there is an info bar where the users can see more information about different elements in the
display. The interface overview , shows the display after the user selected the Account partition. The info bar
shows a toggle button where users can turn human-in-the-loop recommendations on or off, a description of the partition,
derived from open source LLMs, namely GPT-4 and StarCoder, as well as a list of all the classes within that partition.

5.2 Supporting drill-down exploration.

Walkthrough: Priya is interested in exploring the calls between classes, and between classes and datatables. More specifically,

she is interested in knowing which classes interact with each other the most, and which classes write to database tables the

most. Priya is also interested in identifying the Log class in her application.

In order to mitigate information overload, we enable user to filter out edges on the graph by the nature of calls, and
the volume of calls between classes and data. We also allow users to search for a particular class or data table.

There exists several techniques to visualize edge weight, a common one being by using edge thickness. We chose
to maintain a consistent edge thickness to prevent a cumbersome design and used an edge weight filter inspired
by [13] where he user can use sliders to select a range for the volume of calls. The node-link diagram will only show
edges with the specified parameters and filter out the rest, allowing users to explore their desired call volume without
overcrowding the display. The user can filter out the type of calls between classes and datatables by selecting them
through the edge type checkboxes . The display when filters out the other edges accordingly. To identify a specific
class, the user can use the search bar and type in the class name. The search bar will provide suggested nodes as the
user is typing.

5.3 Communicating Class Uncertainty

Walkthrough: Priya is interested in knowing how confident the algorithm is in the recommendations provided in the initial

display.

Several studies have demonstrated the importance of explainability in human-AI collaboration. In our formative
interviews, users expressed the importance of communicating AI outcome uncertainty. In our usage application, there
are two levels of uncertainty, namely the uncertainty of CARGO when assigning partitions to methods and the error
rate in the class partitions created by taking the mode of the method partitions. Since CARGO is deterministic, further
research needs to be conducted on the interpretability of its uncertainty. Therefore, we chose to examine the uncertainty
class partition assignments.

We communicate uncertainty for each class through node opacity. The higher the opacity, the more confident the
algorithm is in the partition assignment. The user is then able to focus on the least confident node in their reviewing
process. Class uncertainty is also visible in the tooltip as users hover over nodes.

5.4 Displaying Method Partitions & Splitting a Class

Walkthrough: Priya identifies a class with low confidence and would like to know how the methods are distributed across

partitions.

As described in 4, CARGO assigns partitions based on methods, which are then aggregated to classes. Users expressed
caution about displaying methods in a network graph due to the possibility of information overload, which could
impact the interface’s navigability. However, they also acknowledged the potential advantages of viewing the partition
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assignment for methods. This would not only enable users to have a more detailed view of their application, but it
would also enable them to better understand how class partitions are assigned.

As shown in , the user can click on a class node to display information about its methods in the info bar.
shows a bar chart representing the number and percentage of methods in each partition. The user can also see the
method names in a draggable list , color coded by their assigned partition. The user can also see a class’ methods
graphically on the node-link diagram by expanding a class node through a right click interaction . The corresponding
methods will appear on the display, represented as smaller circle. To collapse the nodes back into the class node, the
user can right click on any of its methods.

5.5 Splitting a Class

Walkthrough: After identifying classes with low confidence, Priya needs to decide whether the class needs to be split into

two classes.

As previously discussed, some users believed that showing class uncertainty as well as enabling method-level
granularity would be useful. Therefore, we deemed useful to enable the user to move methods to a new class if it
contains a set of methods from various partitions, causing cross-partition calls. In reality, moving methods from one
class to another would require modifying the code base. While our interface does not provide this feature, we investigate
how users would go about editing the high level structure of methods and classes.

If the methods are split between two classes and the number of cross-partition calls is too high, the user can decide
to split the class into two or more classes. The user can click on the "add class" button to add a new class, rename
the classes and then assign methods to classes by dragging and dropping them into the corresponding classes . Once
users are satisfied with their assignments, they can click on the split class button

5.6 Suggesting Partition Recommendations

Walkthrough: Priya wants to move some classes from one partition to another because it better suits the structure of her

application. She starts by moving a first class from one partition to another using a drag and drop interaction.

In order to support the user in their editing process, algorithms should be able to learn from user interactions and
recommend similar data points. Section 4 describes how such a framework can be implemented with CARGO. When
the user moves one class from one partition to another, the interface should capture this interaction and pass it to the
algorithm to update its partition assignment recommendation. If the assignment of one or more data points changes,
the interface should recommend the user to also move these classes.

After the user moves one class from one partition to another using a drag and drop interaction, a suggestion box
appears on the screen if the algorithm generates any changes to class assignments after considering the user’s
interactions. The suggestion asks the user whether they would like to move the changed data point from one specified
partition to another. The user can choose to accept or ignore the algorithm’s suggestion. Prior work in labelling and
active search have used visual interfaces that guide users in their tasks by recommending relevant data points to
investigate and querying the users on whether they would like to accept the system’s suggestions. Similarly, in our
work, suggestions are displayed at the top of the screen after the user moves one class from a partition to another.

6 PROTOTYPE EVALUATION

Motivated by our design considerations, we evaluated our prototype with the same eight software engineers who
completed the formative interviews. We conducted 30-minute guided user studies studies via videocall that we recorded.
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In our study, users were asked to complete a set of pre-defined tasks while using a think-aloud protocol. When
conducting these tasks, we focus on evaluating the features described in our design considerations based on how
participants understand, use and interact with them.

6.1 Study Design

Our scenario used the DayTrader application, a popular Java Enterprise Edition (JEE) trading application 1, with
partition assignments generated by CARGO [17]. First, we briefly instructed users on the think-aloud protocol and
gave an overview of the task. Then, we shared a link to our instruction page and asked them to share their screens. The
instruction page explained each feature in our interface and their functionality. They were then shown the following
lists of tasks.

(1) View the definition of the Account partition
(2) Identify classes that read and write to database tables
(3) Identify classes that have a high volume of calls to other classes
(4) Find the MarketSummaryDataBean class
(5) Identify classes that are likely to belong to another partition
(6) Move TradeConfig to the Orders partition
(7) Accept the suggestion to move the other node
(8) Expand AccountDataBean to see its methods
(9) Collapse the methods back into their class
(10) Split AccountDataBean into two classes

Tasks (1), (2), (3) and (4) evaluate the use of the edge filters and class search features. We observe whether user
interactions appear to be intuitive and seamless. In task (5), we observe whether users make use of the uncertainty
information available to them through the node opacity. In task (6) and (7), we test how the users understand and
interact with the partition suggestions the usability of our approach for splitting a class into two classes. In tasks (8)
and (9), we observe how the user expands and collapse a class and whether they are able to differentiate methods from
classes. In (10), we observe how users split a class into two classes. After reading the instructions and tasks, participants
clicked on a button to launch the interface in a new tab. Participants conducted the tasks sequentially, asking for
guidance when needed while we took notes of our observations.

6.2 Results

We analyzed the interview transcripts in relation to the set of tasks outlined above and our design requirements. We
analyzed the think-aloud transcripts and screen recordings together to identify how users interacted with the interface
to complete the set of assigned tasks.

Supporting Drill-Down Exploration. When participants were asked to identify the classes that read and write to
database tables (2) and classes that have a high volume of calls to other classes (3), all the participants first attempted
to identify the classes by glancing at the node-link diagram. While some successfully completed task (2) using this
technique, others raised difficulties in identifying a class due to the overlapping links. After we reminded participants
of the filter menu, they were able to use the edge weight filter and edge type filter although three of them highlighted
that the filter names are not very informative (P4, P7, P8). P8 stated "you should rename them to volume of calls and

1https://github.com/WASdev/sample.daytrader7
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nature of calls". All participants were able to use the search bar to complete task (4). P6 stated “I like that I can search
for the class name and it will show it to me".

Communicating Class Uncertainty. When completing task (5), all participants demonstrated an understanding
of class uncertainty. P3 stated before completing this task "So this has to do with the certainty. If something wasn’t

very confident where it should go then maybe it’s a candidate to move somewhere else". All participants also successfully
interpreted the opacity of the nodes as class uncertainty and glanced at the display to identify the nodes with the
lowest opacity while hovering on each node to view the uncertainty value. P1 stated "So these would have the lighter

gradient. . . that makes sense I just have to look at different colors". However, P2, P3 and P8 highlighted that an uncertainty
filter would be beneficial to identify the nodes with specific uncertainty values in a more straightforward way. P3
stated that they wished to have seen a filter "Like you had the slider before maybe show me the things you are least or

most confident in". Participants expressed that the current technique of detecting low uncertainty nodes might be time
consuming and tedious for large applications.

Displaying Method Partitions and Splitting a Class.When identifying a class with low confidence (5), users
clicked on it to view its methods in the info bar and demonstrated an understanding of the provenance of the uncertainty
value. P3 mentioned the potential usefulness of visually seeing the connections between the methods and the other
classes, confirming the benefit of visually displaying methods in the node-link diagram, a feature that we provide

. While most participants successfully expanded a class into methods through a right click interaction (8) and
highlighted the benefit of this functionality, when asked to identify the methods in the graph, 7 participants missed one
method, which belonged to a different partition than the class. This was due to the lack of visual difference between the
representation of classes and methods. P3 suggested using a different shape for methods, like a square, P7 suggested
nesting the methods inside the expanded class and P1 suggested using an animation that guides the user’s gaze towards
the expanded methods.

When splitting a class, most participants did not notice that the add class button added a label for a new class to
which they could drag and drop methods. Most also did not find renaming classes intuitive. P2 suggested to prompt the
user for a name first before moving the methods into that class. P3 mentioned that a confirmation message would be
useful.

Suggesting Partition Recommendations. Task (6), where participants were asked to move a node from one class
to another, was intuitive to all 8 participants since they use a similar drag and drop interaction other microservice
recommendation tools. Upon dragging and dropping the class node, the suggestion box popped up at the top of the
screen. Most users did not immediately notice the box. P7 mentioned that the suggestion box was not salient enough and
suggested placing it next to the node that was just moved. As we prompted them to shift their focus to the suggestion
box and explain its purpose, three out of the eight users (P4, P5, P7) correctly interpreted the pop up as a suggestion to
move another node and highlighted the importance of this feature. P7 mentioned that "This is good. I like this. When you

are moving a class from one partition to another, if there is a dependency with another class then it probably has to be moved

as well, so it makes sense. We used to do that with an application I worked with." Despite correctly understanding the
suggestion, P4 mentioned wanting to know more information about it. They stated "For me to accept something I need to

know why I’m moving it. The fact that I can accept or reject, that’s good I like that but what I wanna know why are you

asking me to move it.". Both P4 and P5 also mentioned that the node referred to in the suggestion should be highlighted
on the display. 5 out of 8 users (P1, P2, P3, P6, P8) incorrectly interpreted the repartition suggestion as a confirmation
of the node that they moved in task (6), despite its reference to a different class name. P2 stated while reading the
suggestion "So they basically ask you for confirmation to check that you have not done it my mistake". When told that
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the suggestion was referring to a different node, they stated that "If you don’t know the application well enough, a lot of

these things are very similar sounding. So maybe instead say do you ALSO want to move this other one to show that this is

a different one". While this confusion could be due to the fact that the referenced node was not highlighted, it could also
be due to our design choices for the repartition suggestion feature . P3 mentioned "That’s a good feature. We probably

need to get a confirmation that the original move we made worked. And then maybe a recommendation feed. It appearing

as a pop up threw me off cause that just seems like an error or a confirmation. You could have a list of recommendation on

the side and call it intelligent guidance. You can see it at your own pace. I might not have time to do it on the spot, I might

need to think on it. So having a list that you can pull out and tuck away with a notification that indicates “we noticed

something you could do” ". P2 and P9 also highlighted the importance of having a confirmation for moved nodes to
prevent accidental interactions, a feature that does not currently exists in the applications that they are familiar with.

7 DISCUSSION

We interviewed 8 industry professionals to investigate their needs and challenges when interacting with microservice
recommendation tools. Informed by our findings, we identified design considerations and developed a prototype of
an interactive mixed-initiative interface that supports. We evaluated how users interacted with our UI features via
semi-structured interviews. Below, we discuss some of the implications of our findings.

In our formative interviews, we asked participants about their needs and pain points when interacting with mi-
croservice recommendation tools, as well as their thoughts on the utility of AI explainability. We found that most users
asserted the benefits of exploring their applications at a method-level granularity in addition to class-level, provided
that the display does not become crowded and cumbersome. Users brought up concerns about the potential difficulties
when navigating graphical microservice tools for large applications, and highlighted the need for more filters. Users
also highlighted the utility of having more insight into the algorithm’s confidence but were not enthusiastic about
understand low level AI mechanics.

When evaluating our prototype, users responded positively to the several functionalities provided by the features
implemented. Notably, they highlighted the importance of the ability to explore methods and their partitions, and the
ability to receive partitioning recommendations. When it comes to the interpretability and usability of the features,
all users correctly interpreted the class uncertainty and were able to scan the display to detect low confidence nodes
and split a class. When graphically expanding classes to methods, while users correctly performed the interaction and
correctly interpreted the smaller circles as methods, they missed one method that was part of another partition and less
salient. We found that users did not understand partition suggestions, but instead thought that it was a confirmation
of their changes. Many studies have found that people tend to misunderstand or ignore suggestions presented to
them while they are conducting a task [14]. Future work needs to examine ways to integrate other important features
and examine how to present suggestions to strike the right balance between encouraging their use while minimizing
intrusion. Nonetheless, our work provides valuable insights into how users interact with various UI components in a
mixed-initiative microservice recommendation tool.

8 LIMITATIONS & FUTUREWORK

We determined the UI features for our interface based on the needs and challenges identified by software developers
that work within the same enterprise and are familiar with similar applications. While the themes that were brought
up can be generalized across different use cases, they are likely anchored based on the participants’ background and
experience. More research needs to be conducted to examine a more diverse set of users. In addition, our work provides
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a preliminary examination of UI features for microservice recommendation tools and is not exhaustive. Further research
is required to investigate interactions with a comprehensive tool in a more realistic settings and across a range of
use cases. Finally, we encourage researchers to adopt a human-centered approach to inform the design microservice
recommendation tool. While our work is a start to bridging the gap between application modernization and HCI
approaches, there still remain several challenges in this space.

9 CONCLUSION

We presented results from a formative interview study of 8 software engineers who work at a large, international
technology company. They highlighted their challenges and needs when it comes to the use of microservice recom-
mendation tools which we classified into three common themes: information overload, customization and granularity
and considerations for explainability. We developed an interactive mixed-initiative interface that strives to address
their pain points and facilitate interactions with microservice recommendation algorithms. We evaluated our interface
through a semi-structured set of tasks and identified upsides and challenges that users encountered. We then discussed
the implications of our findings and discuss avenues for future research. We believe that human-centered research
can help develop more optimal application modernization tools that work in collaboration with users and provide a
platform to leverage the strengths of both users and AI. We encourage researchers to conduct more work to help bridge
the gap between HCI and software engineering.
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