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Abstract. Joint human/AI decision-making combines AI’s ability to
quickly process breathtaking amounts of data with human contextual un-
derstanding, adaptability and accountability. To achieve optimal perfor-
mance, the human should have appropriately calibrated trust in the sys-
tem, in which the amount of trust afforded to the system aligns with the
trustworthiness of the system. Past work has explored several techniques
to improve trust calibration, including transparency, explainability, and
uncertainty visualization. Achieving trust calibration becomes even more
difficult when the trustworthiness of the system is a moving target. In dy-
namic situations, the trustworthiness of AI systems can fluctuate wildly,
demanding rapid updates to trust behaviors to achieve calibration. Ac-
curate confidence or uncertainty measures have been proposed to help
humans rapidly calibrate their trust in AI systems; however, this requires
that accurate confidence measures exist and that humans can use them
effectively. In this position paper, we join recent calls for research to im-
prove confidence measures in AI systems, and we further emphasize the
need to track and convey multidimensional confidence measures in the
context of large, complex system-of-systems architectures. We discuss
how these measures aid in establishing calibrated trust for AI systems
even in the presence of uncertainty of information. Further, we highlight
the opportunities for improved design in user interfaces that convey AI
confidence to human users and for better preparing humans to optimally
weight AI inputs against other sources of information, including their
own judgment, to arrive at better results when making decisions under
uncertainty in dynamic, complex environments.

Keywords: Trust calibration · AI uncertainty · Trust dynamics · Uncer-
tainty of information · Uncertainty communication · Complex decision-
making · Individual differences · Cognitive forcing functions · Cognitive
biases.

1 Introduction

Artificial intelligence (AI) systems have the ability to rapidly synthesize and an-
alyze vast amounts of information. In addition, recent advancements including
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large language models (LLMs) make interactions with AI systems increasingly
intuitive and understandable to human users. These advantages mean that AI
systems can potentially be enormously useful in terms of decision-making. Joint
human/AI decision-making can combine the strengths of AI with those of hu-
mans in a way that leads to better performance than what can be attained by
either alone. However, the benefits of joint human/AI decision making only man-
ifest in domains that are too complex for an unaided human and too dynamic
or uncertain for a pre-trained model to perform nearly perfectly. For optimal
outcomes, human users must be able to assess when it is appropriate to rely on
the AI system(s) and to what extent.

Well-studied issues of over- and under-reliance in human/AI decision-making
[25, 37] illustrate that recovering from a mismatch between the person’s reliance
on the system and the system’s reliability can be difficult, and this mismatch
should be avoided. Many techniques to increase trust in AI have been examined,
but over-trust can be just as much a problem as under-use [51]. Ideally, the
degree of trust in the system should correspond to the system’s reliability. This
correspondence is known as trust calibration.

Trust calibration can be quite difficult to achieve even in static contexts,
and a number of studies have explored interventions intended to promote it
[54]. Critically, the type of complex domains in which joint human/AI decision-
making can be most beneficial often involve information of varying uncertainty
arriving from rapidly changing environments [48]. In such dynamic and uncertain
contexts, the effective reliability of AI systems may also change rapidly, meaning
that calibrating trust is not a one-and-done achievement. Rather, it must be a
continuously updating process.

In the sections that follow, we first provide an overview of existing work
on the dynamics of trust and trust calibration and potential gaps that may be
productively explored. We then describe a number of relevant research findings
and techniques from cognitive and computer science that suggest potentially
useful directions to make progress in this area. Finally, we summarize these
topics and provide recommendations for future work in trust calibration for
dynamic joint human/AI decision-making.

2 Dynamics of Trust and Trust Calibration

Existing work on trust in automation/autonomy research does not tend to focus
on the dynamics of trust over time, especially in the type of rapidly changing,
multi-system contexts we describe here. Instead, much of the work assesses trust
at a single point in time [55]. Some recent work has explored trust calibration
with changing system reliabilities (e.g., [34]); however, most studies of trust
dynamics have largely measured trust responses to discrete successes or failures
from individual systems that have a constant reliability, rather than system(s)
with changing reliabilities.

Nevertheless, results from these studies are informative about the ways that
human decision-makers update their trust judgments over time. For example,
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there is evidence that human trust dynamics often exhibit three properties. One
of these is continuity, meaning that trust is self-correlated: trust at the previous
time step is highly predictive of trust at the current time step [24, 55]. A sec-
ond property is negativity bias, in which humans have larger trust responses to
system failures than they do to system successes [29, 57]. Finally, at least when
interacting with systems with unchanging reliability levels, people demonstrate
stabilization, meaning that over time and experience with the system, their trust
adjustments will grow smaller [56, 57].

Taken together, previous work examining the dynamics of trust indicates
that the type of rapid updating of trust judgments required by complex and
dynamic joint human/AI decision-making environments is not the default for
human decision-makers. It appears that humans instead tend to demonstrate
hysteresis, meaning that a change in their trust response can lag substantially
behind a change in the system’s trustworthiness [25]. In rapidly fluctuating con-
texts, a human trust response that is even only moderately out of sync with the
AI system’s behavior can potentially lead to snowballing trust miscalibration.

It is important to note additionally that studies of trust in autonomy and/or
automation measure trust in different ways, including self-report assessments of
subjective trust in the system, or inferring trust from observing participants’ de-
cisions to rely on the system. There is evidence that the dynamic responsiveness
of subjective reporting of trust in automation may differ from that of behavioral
measures of trust [2]. Future work in this area may benefit from assessing both
self-report and behavioral measures of trust in AI systems.

Recent work indicates that providing cues to human decision-makers when
they exhibit evidence of improperly calibrated trust (whether over- or under-
reliance) can help to mitigate the inertia in trust adjustments [34]. The optimal
way to represent both this type of cuing information, as well as other poten-
tial strategies for enabling humans to appropriately calibrate trust, represents a
range of active research areas that we describe more fully in the sections below.

3 Cognitive Strategies for Appropriate Trust Calibration
for AI

Prior work has shown that there exists several cognitive biases that can impact
human-AI decision-making [5]. In this section, we consider interdisciplinary ap-
proaches, building upon the cognitive science, visualization and broader HCI
literature to suggest solutions to foster effective trust calibration for AI. We
provide guidelines for future research to account for individual differences in
cognitive traits, mitigate cognitive biases and implement strategies for complex
decision-making.

3.1 Individual Differences for Cognition and AI Trust Calibration

Prior work across various fields has shown that individual differences can im-
pact reasoning and performance across a number of tasks. For example, Liu et
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al. [27] has reviewed 29 key articles in the visualization literature that altogether
demonstrate the effect of 13 individual traits on metrics such as speed, accuracy,
eye tracking, mouse data and subjective feedback when interacting with visu-
alizations. When it comes to the effect of individual differences on human-AI
interactions, prior work has shown evidence that individual traits can impact
self-reported trust in AI [43]. There has also been evidence that traits such
as trust in automation [6, 45], Need for Cognition (NFC) [47], locus of control
[45], and neuroticism [47] can impact reliance on AI. Moreover, Swaroop et al.
demonstrated in their recent work that over-reliance on a block could predict
over-reliance on a subsequent block, thus introducing reliance on AI as a poten-
tial stable individual difference measure [47].

Appropriately calibrating trust for human-AI decision-making requires an
understanding of individual risk perception and risk propensity, especially when
the AI accuracy is a moving target. The fields of behavioral economics and cog-
nitive science provide us with a broad understanding of how humans respond
to decision-making under risk, typically following patterns of loss aversion, ref-
erence dependence, and probability weighting, as outlined in Prospect Theory
[19]. These principles suggest that humans tend to overvalue potential losses
relative to gains and often misinterpret probabilities, favoring certainty over
ambiguity, even when the actual probabilities do not support such biases. Dual-
process theory, another prominent decision-making theory, posits that people
primarily rely on intuitive reasoning to make decisions, while logical reasoning
demands substantial working memory resources [18]. In addition to these ten-
dencies, individuals can have different baselines for risk, which can be measured
by self-reported tests such as the general risk propensity scale (GRiPS) [58].
When interacting with AI systems, overly risk-averse individuals may be more
likely to underutilize an AI system even when it demonstrates high accuracy,
while those with higher risk tolerance might tend to over-trust a system prone
to errors. This dynamic becomes even more complex when AI performance fluc-
tuates or when the AI provides probabilistic outputs, as users may struggle to
appropriately weigh uncertainty information.

There is a critical need for future research to explore the role of individual
differences in human-AI decision-making, particularly in dynamic and uncertain
contexts. Understanding how individual traits influence reliance and decision-
making is essential for improving trust calibration. As mentioned above, in dy-
namic environments where uncertainty is high, miscalibrated trust can lead to
over-reliance, underutilization, or inefficient collaboration, all of which can com-
promise performance and outcomes. By examining individual differences, re-
searchers can identify stable traits that predict trust patterns, paving the way
for personalized AI systems that adapt to users’ cognitive profiles. This line of
inquiry is essential to foster more effective, reliable, and resilient human-AI part-
nerships, ensuring that trust in AI systems is appropriately calibrated for the
demands of real-world decision-making.
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3.2 Mitigating Cognitive Biases for Joint Human/AI
Decision-making

Feedback Mechanisms & Metacognition. Metacognition—the awareness
and regulation of one’s own cognitive processes—enables individuals to take
control of their learning and decision-making across various tasks through self-
awareness, self-reflection and self-monitoring [22]. Metacognition has primarily
been studied in the context of education, where research has shown that individ-
uals with strong metacognitive skills can outperform individuals with stronger
aptitude in academic settings [40, 46]. In HCI and HAI, self-assessment has often
been used to measure one’s subjective experience during an experience or be-
havioral task. However, only a few researchers have incorporated metacognitive
methods in a closed loop, which has the potential to enable significant improve-
ments in decision-making. For instance, Wall et al. enabled participants in a
controlled study to revise decisions after viewing interaction traces that showed
how they allocated time and attention across the data, promoting conscious
reflection [52].

We encourage researchers to implement real-time trust feedback mechanisms
that allow users to monitor their trust alignment across multiple systems. For
instance, interaction traces or confidence-level indicators can highlight how users
allocate their trust among systems over time, prompting self-reflection on whether
their reliance matches system accuracy. This metacognitive reflection can help
users adapt their trust dynamically as AI performance changes.

Cognitive Forcing Functions. Cognitive Forcing Functions (CFFs) are inter-
ventions which, made at the time of decision-making, disrupt heuristic reasoning
and instead encourage individuals to engage in analytical thinking [23]. Buçinca
et al. applied this framework to human-AI decision-making, where CFFs may
be used to encourage users to think critically rather than passively trust AI
suggestions, which can lead to over-reliance [6]. They demonstrated that CFFs
lead to better decision-making outcomes by fostering appropriate reliance on
AI systems [6]. Some of the cognitive forcing strategies used in the human-AI
decision-making literature include:

• Prompting the user to make a decision before seeing the AI’s recommenda-
tion [14, 6]

• Delaying the presentation of the AI recommendation [38, 6]
• Displaying the AI recommendation on demand [12, 6].

CFFs have been applied to a wide range of practical applications and em-
pirically examined using tasks ranging from generalizable to highly specific. For
example, Kunar et al. has examined how to optimally display Computer-Aided
Detection (CAD) information to foster better visual search performance, a task
highly applicable to medical decision-making [20]. They found that delaying
the presentation of the CAD recommendation until after the user has manually
searched the display reduced miss errors [20].
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In complex and dynamic contexts, metacognitive strategies can be used to
help users evaluate AI recommendations critically and adapt their trust dynam-
ically. They may be also be leveraged to foster appropriate trust by introducing
cross-system comparison tasks, where users are required to assess and reconcile
outputs from multiple AI systems before finalizing a decision. This approach en-
courages active consideration of discrepancies and system accuracy rather than
passive acceptance. Additionally,confidence elicitation prompts can be imple-
mented, asking users to report their confidence in a decision both before and
after viewing AI outputs. This step would not only fosters critical thinking but
also highlight mismatches between the user’s confidence and system accuracy,
aiding in trust recalibration. Cognitive forcing strategies have the potential to
ensure that users engage thoughtfully with multiple AI systems, dynamically
adapting their trust based on observed reliability. Delaying accuracy information
or AI recommendations until after an initial decision can prevent over-reliance
and encourage users to rely on their own judgment, particularly when interacting
with systems of varying performance. When implementing these frameworks and
strategies, it is important to note that individual differences and other cognitive
biases may mediate interactions. For example, prior work has shown that that
CFFs benefited individuals with higher Need for Cognition more compared to
their lower Need for Cognition counterparts [6]. We encourage future research
to consider joint approaches when evaluating the effect of cognitive factors on
human-AI decisions.

3.3 Complex Decision-making

Decision-making is an essential aspect of operating in the world today. Depend-
ing on the environment and situation, decision-making can be considered com-
plex. Decisions become complex when there are numerous options or alterna-
tives to consider and where factors are uncertain and multifaceted [33]. Com-
plex decision-making additionally can be time and risk critical, for example in
healthcare environments or humanitarian relief efforts. Unlike simple day-to-day
decision-making that generally have clear and predictable criteria and alterna-
tives to consider, complex decision-making requires the decision maker to eval-
uate the risks, uncertainty, trade-offs, consequences, and the dynamicity of the
environment.

There are many different algorithms and techniques that can aid in complex
decision making, including Multi-Criteria Decision-Making (MCDM). MCDM
allow for the evaluation, prioritization, and selection of an ideal alternative in
considerations to the criteria that can effect that decision [42]. It is widely stud-
ied in operations research and has been applied too many different fields such as
healthcare, engineering, and business [42]. Additionally, more research is evalu-
ating hybrid approaches that combine two or more MCDM methods to leverage
the strengths of the method while minimizing the limitations [7, 42, 50]. With
utilizing MCDM for AI and ML applications, it is important to consider the
aspects of complexity to ensure that the ideal solution is appropriate for the
environment or situation the decision is taking place.
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Trust has a direct impact on decision-making, and becomes even more dire
when the levels of complexity and uncertainty are high. When presented with
information, the decision-maker needs to determine their trust in the source
and while also evaluating all of the factors that make up a decision. If the
wrong decision is made (thus creating a consequential or less than ideal result),
that can negatively affect the decision-makers trust in the source. Vice versa
can be applied, and good results can positively affect the decision-makers trust.
Ultimately, there needs to be a level of adaptability when it comes to assessing
trust and uncertainty for complex decision-making.

4 Uncertainty Communication

In complex, real-world environments where joint human/AI decision-making is
likely to be most beneficial, there is typically substantial uncertainty in the
incoming data used by the AI systems, as well as uncertainty in the accuracy
of the recommendations provided by the AI based on that data. Some work
suggests that providing a representation of the uncertainty in a prediction to
the human decision-maker may improve trust calibration (e.g., [48, 58]). In this
section we describe in detail the concept of uncertainty of information and some
of the challenges associated with representing uncertainty to human users.

4.1 Uncertainty of Information

As stated previously, trust is key for HAI systems to work well and support
tasks in a manner that exceeds the ability of the human or the AI alone. In [48]
the authors explore AI supported decision making in military coalition opera-
tions. They state that “AI systems can help human teammates build suitable
mental models by giving explanations of how their outputs were arrived at and
estimates of the uncertainty in their outputs”[48]. In this use case the need for
forming these human-AI teams may take place and change quickly. In these high
risk situations, data collections may be impacted as well as the time for pro-
cessing the data to make it actionable. Moreover, AI systems may be negatively
impacted in these contested environment. Thus, the ability to have appropri-
ately calibrated levels of trust even as the AI is adjusting to the rapid changing
tasks and data sources is critical. This is one of the primary motivations of the
uncertainty of information concept. Uncertainty of Information [41] is a concept
that explores how uncertainty can be represented and communicated to humans
and intelligent systems to enhance different tasks, especially decision making.
For both the human and the intelligent system, decision making is performed
with some level of uncertainty. For AI enabled systems that interact or part-
ner with humans, having a computational model that leverages how humans
might categorize uncertainty or what that uncertainty is associated with can
aid in the communication and understanding between the two. Uncertainty may
come from the model that the intelligent system relies on, usually referred to
as epistemic. Uncertainty that may come from the data is usually referred to
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as aleatoric. These are broad categories which may not convey information of
about the uncertainty that can help with the decision. With this in mind the
uncertainty of information concept borrows ideas from the human information
interaction domain. Specifically, Gershon’s work related to the imperfect nature
of information [13]. Uncertainty of information uses similar categories and lever-
ages those categories as weight within a computational model to represent that
idea.

The categories include corrupt, incomplete, inconsistent, questionable, im-
perfect, disjoint, imprecise, and inaccurate. Each category can be associated
with various sources. For example, the source could come from text, imagery,
networks, or devices. For more physical sources their these categories of uncer-
tainty can represent limitations in the data generated or in the data of their
state. In this concept the computational model can present and communicate
uncertainty as a collection of the contributions from the sources by categories
or for each individually. By using this concept, where the uncertainty lies can
adjust or modify the outcome based on criteria relevant for the tasks. The un-
certainty for specific categories and sources may have more impact or more risk
when viewed from this perspective.

Recent work suggests that AI uncertainty quantification (UQ) is critical for
joint decision-making [1, 17]. This is an active area of research, with numerous
techniques developed for AI UQ, but also many remaining gaps and challenges
to achieving reliable and unbiased measures of uncertainty in AI predictions [1].
By incorporating the uncertainty of information concept trust may be better
described and understood, enhancing the performance of the human-AI system.
This is one way to support the interpretability of AI systems at any stage in the
tasks and state of processing. Below we discuss considerations related specifically
to the communication and representation of uncertainty to the human user.

4.2 Representation of AI Uncertainty

Maintaining appropriate estimates of an AI or other model’s uncertainties is a
complex challenge, and as those challenges are addressed, an additional challenge
arises: how to communicate these uncertainties to a human teammate. Uncer-
tainty communication typically involves some combination of verbal, numeric,
and visual expression [49].

Verbal and written communication of uncertainty often employs verbal prob-
ability expressions, such as “possibly” or “probably”, but these words do not ef-
fectively or precisely convey quantitative uncertainty. A recent review of verbal
probability expression and reception found disagreement and variability in how
verbal probability statements are mapped to numeric probability, with variation
between individuals and contexts [8]. Attempts have been made (e.g. [26, 15]) to
provide standardized language to senders of messages about probabilistic events
and evidence, but for precise communication, the receiver must understand those
standardized expressions in the same way as the sender [28, 53]. When precise
communication of uncertainty is important, numeric expressions might be more
suitable than verbal expressions [8].
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Although numeric expressions of uncertainty or probability have been found
to be more precise, it can be difficult to comprehend many numbers at once
along with their relationships. This is likely to be the circumstance in human/AI
complex decision-making. In those cases, visual expression of uncertainty might
be more suitable. Direct experimental comparisons of decision-making with nu-
meric and visual representations of probability or uncertainty are relatively rare,
numeric and visual expressions of the same data result in somewhat different de-
cisions [31].

Visual expression of uncertainty of information, prediction, or inference can
take many forms, with typical examples depicting a statistical summary, repre-
sentative examples, or an entire probability distribution [35]. However, experts
and non-experts alike can misunderstand uncertainty visualizations [4, 36], lead-
ing some authors to omit uncertainty entirely [16]. Generalizable theories of
decision-making with visualized uncertainty and where it fails can point the way
toward principles for designing and evaluating effective visualization of uncer-
tainty [3, 36]. The idea of a single best approach to visualizing uncertainty might
not be attainable [32, 44], as uncertainty visualization effectiveness depends on
static and dynamic factors of the task, message, and individual receiver, such
that the best visualization might change from task-to-task, moment-to-moment,
and person-to-person.

Research evaluating uncertainty visualization often focuses on the effective-
ness of the visualization for a user who is assumed to have no special expertise
with the visualization. This assumption is reasonable when the audience for a
visualization is the general public, as in severe weather warnings, public health
messages, or mass media. Although mere exposure to an uncertainty visualiza-
tion does not necessarily foster understanding of that visualization, there is some
evidence that deliberate practice [9] can lead to improvements in task perfor-
mance when using visualized uncertainty. In an experiment evaluating different
visualizations in the uncertainty of the arrival time of a bus in which participants
made a choice based on the visualization and then received feedback on their
performance, average performance improved over the course of the experiment
[10]. Similarly, an experiment in which participants combined multiple visual-
ized uncertain spatial estimates to select the most likely location, performance
improved over time with feedback both on the practiced visualization as well
as on unpracticed visualizations [21]. These two findings suggest that iterated
attempts with feedback can improve task performance, but they leave unclear
to what extent participants were learning to use an uncertainty visualization vs.
improving their strategy or ability to reason over the relevant problem. Follow-
up work on the spatial estimate combination work found that participants who
practiced that task with one visualization performed another spatial estimate
combination task using a much different visual context much faster (albeit at
equivalent accuracy) relative to participants who had not practiced [11].

A cognitively inspired model of decision making with visualized uncertainty
[39, 36] identifies multiple stages of information processing and reasoning in ar-
riving at a decision. The first stages involve extracting information from the
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visual array by way of an instantiated graph schema, followed by formulating
a conceptual question and inferring an answer based on information extracted
from the graph schema. The effects of practice could improve any or all of these
processes. The findings that practice with one task improve performance on an-
other, closely related task using a very different visual array suggest that practice
can, at least in some cases, improve steps beyond extracting information from
the visual array. This is good news for the potential of uncertainty communi-
cation to help people appropriately rely on AI teammates, because although
some practice might be required initially, that practice could accumulate skill
in some generalized ability to use communicated uncertainty to weight AI input
and understand how that uncertainty bears on a given decision.

Challenges to effectively conveying uncertainty are numerous. Research is
needed to better understand and develop guidance for developers of AI deci-
sion aids to implement effective uncertainty communication. Although recent
work suggests that adding visualizations of AI UQ information to AI predictions
can improve both decision-making accuracy and confidence calibration [30], it
might be too soon to judge whether uncertainty communication is sufficient to
induce calibrated trust or appropriate reliance [48, 51]. As we shift focus from
‘how much should I trust this AI’ to ‘to what extent can I rely on this AI in
this situation relative to my other sources of information’, additional research
to understand how to effectively convey uncertainty alongside research to un-
derstand how individual differences, cognitive factors, and the role of training
and practice in probabilistic decision making will be critical to enabling effective
joint human/AI decision-making.

5 Conclusion

In this paper we describe one challenge associated with effective joint human/AI
decision-making in complex and rapidly changing environments; namely, how
can appropriate trust calibration be maintained among multiple dynamic AI
systems. We review relevant literature on the dynamics of trust calibration,
highlighting the previous focus on “snapshots” of trust calibration and the recent
calls to assess trust calibration instead as a dynamic process. We discuss lessons
from cognitive science that may be applied to the design of AI systems to take
into account individual differences and to mitigate cognitive biases. Finally, we
describe the concept of uncertainty of information and review research exploring
how uncertainty might best be conveyed to human decision-makers.

From these discussions, we derive a number of recommendations for both
design and research in this area. First, we recommend further empirical work on
the dynamics of trust in AI that explores the human trust response to multiple
systems of varying reliability; how people weight the input of the different sys-
tems based on observed performance, both in terms of their behavior/reliance
on the systems, as well as their subjective reporting of trust levels. We also en-
courage research that considers individual differences in cognitive traits such as
trust in automation and risk propensity, for personalized and adaptive AI sys-
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tems that may more effectively promote trust calibration across different users.
Similarly, it may be beneficial, where possible, to incorporate real-time trust
feedback mechanisms that allow users to monitor their reliance behaviors and
trust calibration across systems. Researchers should consider implementing cog-
nitive forcing functions to promote continuous engagement and assessment of the
reliability of AI systems, rather adopting a more fixed and passive trust strat-
egy. Finally, we echo calls to improve uncertainty/confidence estimates in AI
systems, and to take into consideration the tradeoffs of different representations
of uncertainty for communicating this information to the human user. Moreover,
we encourage evaluations that include uncertainty representations to make use
of iterated practice with feedback to avoid the pitfall of mistaking participant
inexperience with inability to reason with uncertainty.

As AI systems become more capable, they will be deployed in more complex
and challenging contexts. To avoid deploying AI systems in challenging context
would leave unaided humans at a potential disadvantage, but not one so disas-
trous as the disadvantage from using AI systems inappropriately. In this paper,
we have laid out research directions we view as critical to unlocking a future
in which AI systems can be used as part of joint human/AI decision-making in
which the humans are able to appropriately rely on AI systems by maintaining
well-calibrated trust in the face of dynamic and uncertain environments.
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