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Foreword 

Visualization Psychology is enormously diverse. Most of what is known about 
perception and cognition applies to some degree, and this knowledge is relevant to 
a huge diversity of visualization methods ranging from conventional scatter plots to 
people collaborating to interpret scientific data in a shared virtual reality workspace. 

This volume provides an excellent introduction to this diversity, with cutting edge 
research and theory across the breadth of the field. To pick a few examples: We have 
basic perceptual research into what makes a color express a greater quality by Karen 
Schloss and her collaborators. The broader cognitive processes of Sense-Making is 
introduced by Margaret Pohl and collaborators and a more focused introduction to 
the importance of cognitive processes in graph comprehension provides depth. We 
have introductions to other to bodies of theory such as the cognitive processes of 
the visualization designers themselves by Paul Parsons and educational theory by 
Stoiber and collaborators. Enjoy the feast! 

There was a time in the 1990 when visualization psychology did not exist and 
inventions were celebrated, with little attention paid to whether they worked; I 
recall that the hottest topics in visualization were a tree structure visualization 
invention called the Cone Tree, the CAVE virtual reality viewing environment, and 
line integral convolution (LIC) for visualizing flows in liquids and gasses. None 
of these turned out to be useful, and this could have been predicted with a little 
insight into the perceptual and cognitive issues. ConeTrees because of the mental 
gymnastics required for interaction; CAVES for many reasons including occlusion, 
vergence-focus conflict, poor interaction affordances, and lack of resolution at the 
critical fovea (it is not surprising that HMDs now dominate); and LIC because it 
provides a poor stimulus for orientation detectors and lacks perceptual cues for 
showing speed effectively. 

We can only avoid such costly mistakes if the discipline of data visualization 
is grounded in both evaluation and psychological theory. And, although a careful 
evaluation can usually avoid egregious mistakes in design, evaluation without theory 
only applies after the fact. The proper application of perceptual and cognitive theory 
can inform visualization design from the outset.

v



vi Foreword

We are entering a new Age of Visualization. The massive data sets being 
generated in every field of human endeavor can often only be understood with 
visualization. Who can comprehend a table with a thousand numbers? But it can be 
easy to comprehend a thousand data points represented graphically. Companies such 
as Tableau employ perceptual and cognitive scientists to ensure that their products 
present data in ways that are clear and not misleading. One good thing that has 
come from the COVID disaster is a huge growth in public facing visualizations; 
news websites now show maps, times series plots, and sometimes complex network 
diagrams. Visualization Psychology provides the theoretical underpinnings of effec-
tive visualization design and this book provides a snapshot of the current state of the 
art. 

January 2022 Colin Ware 
Research Professor, University of New Hampshire, New Hampshire, USA 

Author of Information Visualization: Perception for Design, Morgan Kaufmann 
and Visual Thinking for Design, Morgan Kaufmann



Preface 

Data visualization emerged as an academic subject in 1987 following the NSF Panel 
Report on “Visualization in Scientific Computing” edited by Bruce H. McCormick, 
Thomas A. DeFanti, and Maxine D. Brown. For several decades, building strong 
connections between visualization and psychology has always been a research 
agenda in the field of Visualization and Visual Analytics (VIS in short). Many called 
for interdisciplinary research between VIS and psychology (e.g., “Information 
Visualization, Wings for the Mind,” Stuart Card, 1995, and “Illuminating the Path: 
The Research and Development Agenda for Visual Analytics,” James J. Thomas and 
Kristin A. Cook, 2005). Several psychologists have exerted most valuable influence 
on VIS (e.g., “Visual Thinking for Design,” Colin Ware, 2008). 

However, the progress for building connections between VIS and psychology 
has not been as rapid as many other advancements in either field. Before 2010, each 
VIS conference typically featured 0-2 papers on empirical studies. The VisWeek 
2010 in Salt Lake City became a turning point, and since then more and more 
empirical study papers have been presented at VIS. Between 2016 and 2019, there 
were some 60 empirical study papers in VIS/TVCG tracks. Many young talents who 
are knowledgeable in both VIS and psychology emerged in the VIS community, 
while many colleagues in psychology are authoring and co-authoring such papers 
and attending VIS conferences. It is therefore timely to ask both VIS and psychology 
communities: Is there a need for Visualization Psychology as a new interdisciplinary 
subject? 

There are many branches of applied psychology, such as clinical psychology, 
counselling psychology, educational psychology, forensic psychology, health psy-
chology, industrial-organizational psychology, legal psychology, media psychology, 
music psychology, occupational psychology, sports psychology, and so on. Almost 
all of these are widely recognized academic subjects and have their own conferences 
and journals. Since interactive visualization and visual analytics are activities most 
commonly encountered in human-centric processes in data science and real-world 
data intelligence workflows, many will argue for the necessity and feasibility for 
developing Visualization Psychology—as a branch of applied psychology—in a 
coherent and organized manner.

vii
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There has been existing activities for empirical research during VIS conferences, 
noticeably, the BELIV workshop series and the VISxVISION events. The BELIV 
workshops, as the name suggests, have focused on the “evaluation” of visualization 
methods and techniques, and there has been a strong emphasis on “beyond” the 
traditional controlled experiments. Meanwhile, the VISxVISION events have been 
successful in bridging to the vision science community, but as the name suggests, 
the scope of VISxVISION cannot easily cover the engagement with scientists 
and researchers with expertise in higher-order cognition (including topics such 
as analytical reasoning, problem-solving, and collaborative cognition) in studying 
complex phenomena in VIS processes. Both series of events are no doubt important 
to the development of VIS as a scientific discipline, while stimulating more 
interdisciplinary and empirical research. 

Advanced data intelligence workflows likely involve both human-centric pro-
cesses (e.g., visualization and interaction) and machine-centric processes (e.g., 
statistics and algorithms). Such workflows feature a diverse range of cognitive 
activities. Numerous phenomena in these processes cannot easily be explained using 
the existing theories and experiments in VIS and psychology, including some of 
the most fundamental questions such as “since visualization is not as precise as 
the data being depicted, what is visualization really for, and how visualization 
works?” Being able to answer such fundamental questions and explain numerous 
real-world phenomena in VIS processes is critical to VIS and data science as 
well as psychology. As VIS techniques are for augmenting human cognition, 
we must develop VIS techniques by building on the theoretical, empirical, and 
methodological knowledge that has already been acquired in psychology. At the 
same time, the field of VIS is a rich playground for discovering new knowledge 
relevant to both VIS and psychology. 

The first IEEE VIS Workshop on Visualization Psychology took place during 
IEEE VIS2020, providing a venue for the experts in VIS and psychology to define 
the scope of this new subject of Visualization Psychology collectively, and stimulate 
new research directions and activities in both fields. The logo of the workshop 
features the abbreviations of “Vis” and “Psych” connected by one of the most 
popular continuous color maps in visualization. The goals of the workshop were: 

• To broaden the scope of empirical research in VIS to involve more cognitive 
aspects in addition to considering visualization a vision or perception problem 

• To provide researchers in VIS with a significant platform to develop their theories 
and experiments in addition to acquiring knowledge from psychology 

• To enable researchers in psychology to explore VIS as a rich playground and 
carry out research beyond the existing molds
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• To enable the development of the young talents in VIS and psychology through 
the development of a new interdisciplinary subject and the provision of a platform 
for research communication, publications, and collaboration 

This book results from the initiative taken by the VisPsych workshop. The 
attendees of the workshop were motivated by the aforementioned goals and 
enthused by the technical developments and outlooks presented in the workshop. 
Many offered to transform their preliminary ideas, viewpoints, and findings to 
chapters to be included in this book. After some two years of enormous effort and 
great endurance, these authors produced the wonderful scholarly work featured in 
this book, which consists of 15 chapters organized into 3 parts: 

• Part I—Visualization Psychology from a Psychology Perspective—contains 
five chapters that examine aspects of psychology, including existing theories, 
findings, and methodologies, and discuss how such acquired knowledge (e.g., 
findings on color semantics, process theories for graph comprehension, theo-
ries for mental models, and dual-processing models in decision-making) help 
understand and interpret phenomena in visualization or such established best 
practice (e.g., the diversity of research methods) can influence the development 
of Visualization Psychology. 

• Part II—Visualization Psychology from a Visualization Perspective—contains 
five chapters, each of which focuses on an important topic in VIS and makes 
connections with aspects of psychology. The selected visualization topics include 
visualization literacy, visualization of health information, the cognition of visual-
ization designers, and understanding eye tracking data captured in visualization 
processes. The discourses presented show that not only these topics can benefit 
from the previous work in psychology, but can also inspire researchers in Visu-
alization Psychology to make new discoveries that are scientifically significant 
and practically useful. One chapter in this Part presents a coherent argument that 
the field of VIS is a fertile laboratory for exploring human cognition, while VIS 
research and VIS system development can be grounded in theories of perception 
and cognition. 

• Part III—Visualization Psychology from an Experimental Perspective—contains 
five chapters, presenting a collection of experimental findings on several topics, 
including visualization tasks, perceptual biases, design preferences, uncertainty 
visualization, and sensemaking strategies. Through structured literature reviews, 
categorized descriptions, and analytical discourse, these chapters demonstrate 
that there is an abundance of intriguing and complex phenomena in visualization 
processes, which cannot easily be explained by the known theories and experi-
ments in either VIS or psychology, but can benefit from further interdisciplinary 
research in a new subject Visualization Psychology. 

If the subject of Visualization Psychology were a landscape to be painted 
collectively by the scientists and researchers in VIS and psychology, the process 
of painting this landscape has just begun. This book would not be in any way a 
piece of finished work. It would be better described as a number of earnest and
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thoughtful strokes brushed onto the canvas by a diverse group of authors attempting 
to sketch out some major components of the landscape. No doubt, we need many 
more scientists, researchers, and practitioners to join this long-term effort. The 
landscape would gradually but surely unveil itself with every new stroke resulting 
from future research in Visualization Psychology. 

We are hugely grateful to all authors of the 15 chapters in this book, and 
appreciate their scientific and scholarly discourse as well as collaborative and 
enduring effort in completing their ambitious writing plans. In addition, we value 
tremendously the contributions made by other authors who submitted their papers 
to the VisPsych workshop. 

We would like to record our enormous gratitude to all members of the Program 
Committee of the VisPsych workshop, including Alfie Abdul-Rahman, Nadia 
Boukhelifa, Spencer Castro, Michael Correll, Evanthia Dimara, Kristin M. Divis, 
Sarah Dryhurst, Madison Elliott, Steve Haroz, Lane Harrison, Kuno Kurzhals, 
Bongshin Lee, Laura Matzen, Christine Nothelfer, Alvitta Ottley, Khairi Reda, 
Irene Reppa, Karen Schloss, Yunhai Wang, and Cindy Xiong. They reviewed 
the submissions to the VisPsych workshop, and many of them also reviewed the 
chapters included in this book. Their time, effort, knowledge, and wisdom are deeply 
appreciated, and their comments, critiques, and suggestions have been indispensable 
to this book as well as the VisPsych workshop. 

We would like to thank all members of the Advisory Board of the VisPsych 
workshop, including Sarah Creem-Regehr, Sara Fabrikant, David Laidlaw, Bradley 
Love, Sine McDougall, Melanie Tory, Barbara Tversky, and Colin Ware. In partic-
ular, we appreciate very much their advice and suggestions on the scope and future 
development of visualization psychology as a new academic subject. Our special 
thanks to Barbara Tversky for her keynote speech “How Graphics Communicate?” 
that provided an inspiring opening of the VisPsych workshop, and to Colin Ware for 
his scholarly Foreword that introduces this book from the perspective of a pioneer 
of Visualization Psychology. 

Last but not least, we are in debt to Helen Desmond (Springer) for her advice 
and patience throughout this book project. We appreciate the support offered by 
the Springer teams for managing the Springer LATEXstyle and for typesetting, 
cover design, web access, and many other matters in the publication process. The 
editors of this book also appreciate the editorial fees offered by Springer and have 
collectively decided to donate all the fees to IEEE VIS2022 as a sponsorship. 

Oxford, UK Min Chen 
Surrey, BC, Canada Brian Fisher 
Boulder, CO, USA Danielle Albers Szafir 
London, UK Rita Borgo 
Swansea, UK Darren J. Edwards 
Boston, USA Lace Padilla 
December 2022
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Part I 
Visualization Psychology 

from a Psychology Perspective 

Visualizations have the power to inspire, compel, and even change our firmly held 
beliefs. At their best, visualizations effortlessly reveal the true nature of data to a 
wide range of audiences. On the other hand, such raw power can lead to serious 
communication failings. For example, the Cone of Uncertainty produced by the 
National Hurricane Center leads viewers to incorrectly think that all storms grow 
in size over time. Without understanding the psychology of how the mind pro-
cesses visualizations, predicting when or why some visualizations confuse readers, 
whereas others are effortlessly understood, can be challenging. By understanding 
the psychological processes that drive our experience with visualizations, designers 
can avoid predictable pitfalls and create new visualizations that harness the immense 
processing power of the brain. 

Fortunately, psychology has a long history of using visual stimuli to understand 
mental processes. Some of the earliest experiments in psychology (circa 1850) used 
participants’ responses to visual stimuli to infer information about the visual system 
(relationship between the eye and brain). Today, psychological research offers a 
wealth of knowledge about how people perceive, reason, and make decisions with 
visual information. Only recently have researchers worked to generalize psycholog-
ical findings to visualizations. As psychologists have historically conducted many 
studies with visual stimuli, these results may generalize to visualizations. However, 
visualizations may have unique characteristics that reveal new and unexplored 
aspects of human cognition, making research at the nexus of psychology and 
visualizations exciting to pursue. 

The chapters in this part take a psychological perspective by using data visu-
alization research to build on the empirical traditions of psychological sciences, 
gaining insights into mental processes. Chapter 1 reviews empirical research on the 
use of color in visualizations that examines the generalizability of seminal findings 
in color perception and reveals new insights into the relationships among perception, 
language, and data attributes. Chapter 1 also provides practical recommendations 
for using color in visualizations. Chapter 2 reviews prominent theories of graph 
comprehension, each of which offers high-level descriptions of the relationship 
between cognitive processes. This chapter details the evolution of psychological the-
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ories of graph comprehension and their application to data visualizations. Chapter 3 
reviews theories of mental models of visualizations. Mental models describe the 
process by which people create and store internal representations of graphs. Mental 
model research can provide valuable insights for optimizing learning and memory 
of visualizations. Chapter 4 reviews theories of visualization decision-making and 
demonstrates the application of theoretical frameworks. This chapter highlights 
how new advances in decision-making can help improve visualizations intended 
for public or policy-level decisions. The final chapter (Chap. 5) compares the 
publication models for psychology and visualization research, highlighting a need 
for greater integration between the fields and alternative publication approaches. 

The chapters in this part offer historical and modern perspectives on the 
psychology of visualizations, ranging from lower-level processing (e.g., perception) 
to higher-level cognition (e.g., decision-making). While revealing new insights 
about the mind, these works point to practical design recommendations informed 
by human capabilities. 

Part I Editor: Lace Padilla 

Northeastern University, Boston, USA



Chapter 1 
Color Semantics for Visual 
Communication 

Karen B. Schloss, Melissa A. Schoenlein, and Kushin Mukherjee 

Abstract Visual communication through information visualizations (e.g., graphs, 
charts, maps, diagrams, and signage) is central to how people share knowledge. 
In information visualizations, visual features such as color are used to encode 
concepts represented in the visualization (“encoded mappings”). However, people 
have expectations about how colors map to concepts (“inferred mappings”), which 
influence the ability to interpret encoded mappings. Inferred mappings have an 
effect even when legends explicitly specify the encoded mappings and when 
encoded concepts lack specific, strongly associated colors. In this chapter, we 
will discuss factors that contribute to inferred mappings for visualizations of 
categorical information and visualizations of continuous data. We will then discuss 
how these different kinds of factors can be united into a single framework of 
assignment inference. Understanding how people infer meaning from colors will 
help design information visualizations that facilitate effective and efficient visual 
communication. 

1.1 Introduction 

When observers look at information visualizations such as weather maps, political 
polling charts, and airport terminal signage, the input they receive is just an array 
of light projected onto the retinas of their eyes. Yet, from this input, observers 
ultimately glean knowledge about the world. They find out if it is likely to rain 
during their afternoon walk, which political candidate is expected to win an election, 
or which direction to dash to reach their gate before their flight departs. 

Extensive perceptual and cognitive processing is needed to go from light 
stimulating the retina to knowledge about the world. When interpreting information 
visualizations, this processing includes, but is not limited to, (1) detecting and 
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discriminating visual features (e.g., color, shape, size, texture) [2, 7, 16], (2) 
mapping visual features onto the concepts they represent, and [16, 28, 39, 44] 
(3) using (1) and (2) to derive implications about information represented in the 
visualization [9, 37, 45, 51]. In this chapter, we will focus on (2) by asking: how do 
people infer meaning from visual features? 

At first, it may seem like the answer is straightforward: people can simply 
examine legends, labels, or accompanying text to determine the meanings of visual 
features. However, the answer is not so simple. People have expectations about the 
meanings of visual features, and visualization designs that violate those expectations 
are harder to interpret. Let us consider two examples. 

The first example is a study by Lin et al. [18] on the meanings of colors 
for visualizations of categorical information. In their study, Lin et al. presented 
participants with colored bar charts in which each color represented a different 
category (e.g., kinds of fruits) (Fig. 1.1a). In one condition, the colors of the 
bars were selected by an algorithm that maximized the fit between concepts 
and colors. In another condition, the colors were default colors used by Tableau 
visualization software (ignoring the concepts represented in the visualization). The 
charts included a legend to indicate the category corresponding to each bar color. 
Participants were asked to answer questions about the data in the chart, and their 
response time (RT) was recorded. RT is a measure of interpretability, such that 
faster RTs for correct responses suggest greater interpretability. RTs were faster 
when the colors were optimized to match people’s expectations, compared to the 
default Tableau colors, even though there was a clear legend indicating the meaning 
of the colors in both conditions. 

The second example is a study by Schloss et al. [37] on the meanings of color for 
visualizations of continuous data. In their study, Schloss et al. presented participants 
with colormap data visualizations, in which gradations of colors represented grada-
tions of quantity (Fig. 1.1b). Participants were told that the colormaps represented 
alien animal sightings on the planet Sparl, and their task was to indicate whether 
there were more sightings early or late in the day. The colormap visualizations 
included a legend that specified the mappings between lightness (dark to light) and 
quantity (greater to fewer sightings). Overall, participants were faster at correctly 
interpreting the colormap when the legend specified darker colors mapped to more. 
This is because observers have a dark-is-more bias leading to the expectation that 
darker colors map to larger quantities (see Sect. 1.3.1.2). 

In both of these examples, legends indicate the meanings of colors. But, when 
the encoding indicated in the legend violates people’s expectations, visualizations 
are harder to interpret. Thus, understanding visual communication requires under-
standing people’s expectation about the meaning, or semantics, of visual features.
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Fig. 1.1 (a) Bar charts representing fictitious data about fruit sales, with colors selected by an 
algorithm to maximize fit between concepts and colors (left) or colors determined by a standard 
Tableau palette order (right) (figure based on stimuli in Lin et al. [18]). (b) Colormap data 
visualization representing alien animal sightings at different times of day, with a legend specifying 
dark-more mapping (left) or light-more mapping (right) (figure based on stimuli in Schloss et al. 
[37]) 

1.1.1 Visual Semantics from Multiple Perspectives 

When discussing visual semantics for visual communication, there are two perspec-
tives to consider: the perspective of the designer and the perspective of the observer. 
If these perspectives are aligned, observers are more likely to interpret the message 
that the designer intended to convey through the visualization [12, 18, 25, 39, 50, 51]. 

Perspective of the Designer When we use the term “designer,” we do so liberally 
to refer to anyone who creates a visualization. This could be a professional designer, 
but it could also be an undergraduate student creating a chart from data in their 
research methods course, or even a middle school student creating a diagram 
of the protocol for their science fair project [39]. In cases where people create 
visualizations for the purpose of exploring and finding patterns in their own data 
[10], the designer and the observer are the same person. 

When a designer creates an information visualization, they use visual features to 
represent concepts. This mapping between concepts and visual features is called 
the encoded mapping. For example, if the designer constructs a weather map 
in which darker colors signify larger amounts of rainfall, the map would have
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a “dark-more” encoded mapping. Designers may deliberately define the encoded 
mapping using their own knowledge, using recommendations from other experts, or 
using recommender system algorithms [18, 19, 22, 39, 43]. Alternatively, designers 
may rely on software defaults, which automatically assign colors to concepts in a 
predefined order, regardless of the concepts. In such cases, the encoded mapping is 
created though the designer’s actions, but the designer may not explicitly consider 
the encoded mapping during visualization design. 

Perspective of the Observer When we use the term “observer,” we do so to refer 
to anyone who looks at visualizations with the goal of gleaning knowledge from 
what they see. Observers include the general public looking at public health data in 
the news, travelers looking at maps to find their way, students looking at diagrams 
to learn about mathematical or scientific processes in the classroom, and academics 
who look at charts to learn about the latest discoveries in their fields. 

Observers’ expectations about how visual features should map onto concepts are 
called inferred mappings [39]. As established earlier, it is harder for observers to 
interpret visualizations when the encoded mapping does not match their inferred 
mappings, even in the presence of a clear legend [18, 37, 47]. Moreover, when 
the encoded mapping matches their inferred mappings, observers can more easily 
interpret the meanings of visual features, even in the absence of a legend [8, 21, 
22, 38, 39]. By understanding the nature of observers’ inferred mappings, it is 
possible to design visualizations that match those expectations and thus facilitate 
visual communication. 

1.1.2 Chapter Overview 

In this chapter, we will use color as a lens to discuss factors that influence 
expectations about the meaning of visual features in information visualizations. 
We will discuss color semantics (i.e., the meaning of colors) in the context 
of two general kinds of information visualizations: visualizations of categorical 
information (Sect. 1.2) and continuous data (Sect. 1.3). 

Historically, studies on inferred mappings discussed separate factors relevant 
for visualizations of categorical vs. continuous information. However, recent work 
suggests that they can be understood under a single framework [40], as we will 
discuss at the end of this chapter. 

Defining the scope of artifacts that are considered to be “information visualiza-
tions” (“visualizations” for short) is a difficult endeavor (see Fox [9] and Chapter 9 
of the present book). Stemming from issues raised in Fox [9], we use “information 
visualizations” broadly, in reference to external graphical representations (and 
corresponding verbal labels, if present) created to support visual communication. 
Here, the term “graphical” pertains to non-verbal markings in which visual features 
(e.g., color, shape, size, and texture) are used by a designer to communicate 
their intended message [2]. Although this definition of information visualizations
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includes visualizations of data (e.g., charts), it extends to any encoding system 
in which designers use non-verbal visual features to communicate their intended 
message [51, 53]. For example, an encoding system for recycling bins, in which 
a designer uses different colors to represent different kinds of trash/recyclables, 
is considered an information visualization. Using this broad definition enables 
researchers to identify generalizable psychological principles of how people infer 
meaning from visual features, which transcend specific design formats. 

We aim for this chapter to serve two key purposes. First, it will help readers 
develop an understanding of psychological factors relevant to visual communica-
tion. Second, it will provide designers with knowledge that they can apply to help 
make visual communication effective and efficient. However, color semantics for 
visual communication is an active field of research. This chapter presents a snapshot 
of the field as it is today, but we anticipate that the ideas discussed here will evolve 
with new discoveries about how people infer meaning from visual features. 

1.2 Color Semantics for Categorical Information 

In visualizations of categorical information, discrete colors are used to represent 
distinct concepts. For example, Fig. 1.2a (top) shows a chart in which distinct colors 
represent different sectors that emit greenhouse gases, and Fig. 1.2a (bottom) shows 
a chart in which distinct colors represent different kinds of management for drinking 
water facilities. Visualizations of categorical information can be understood in 
contrast with visualizations of continuous data. Instead of representing discrete 
categories, visualizations of continuous data represent gradations of quantity, such 
as farm size across the world and the number of African elephants across Africa in 
Fig. 1.2b. In this section, we will focus on visualizations of categorical information, 
and we will return to visualizations of continuous data in Sect. 1.3. 

One way to consider color semantics for categorical information is to focus 
only on the strength of the association between a color and the concept it 
encodes. Say, the concepts are watermelon and mango, and the chart is about fruit 
preferences. Mango is strongly associated with shades of orange, and watermelon 
is strongly associated with shades of red. So, if presented with the bar chart in 
Fig. 1.3a, observers would easily infer that orange encodes mango and red encodes 
watermelon. 

But, what if concepts do not have specific, strongly associated colors, such as the 
more abstract concepts in Fig. 1.3b? And, what about cases when multiple concepts 
have similarly associated colors, such as the recycling related concepts in Fig. 1.3c? 
If one thinks about inferred mappings only in terms of associations between a single 
concept and single color, they may conclude that color cannot meaningfully encode 
concepts under such conditions. However, recent work suggests that color semantics 
is not so limited [22, 39]. To understand why, we must first draw a distinction 
between color–concept associations and inferred mappings.
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Fig. 1.2 Examples of visualizations in which color encodes (a) categorical data and (b) continuous 
data. Figures have been adapted from [30–33] 

1.2.1 Color–Concept Associations vs. Inferred Mappings 

It may be tempting to think that people’s expectations about the meanings of 
colors in information visualizations simply depend on the association between an 
individual color (e.g., yellow) and an individual concept (e.g., banana) represented 
in the visualization. However, their expectations, or inferred mappings, are far more 
interesting and complex, as we explain below. 

1.2.1.1 Color–Concept Associations 

Color–concept associations are the degree to which individual colors are associated 
with individual concepts. Evidence suggests that people form color–concept asso-
ciations through experiences in the world [41], at least for concepts with directly 
observable colors. As for more abstract concepts, some have proposed color– 
concept associations are formed by extension from related concrete objects that do 
have directly observable colors [36, 48]. 

For any concept, one can quantify the degree to which that concept is associated 
with every possible color that a human can perceive. In practice, when researchers 
measure color–concept associations, they sample colors over perceptual color space
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Fig. 1.3 Examples of visualizations in which colors are used to encode categories, which have 
been used as stimuli in experiments on inferred mappings. (a) Bar chart representing data about 
watermelon and mango, which are concepts with strong, specific associations [37]. (b) Bar chart 
representing data about safety, comfort, sleeping, and driving, which are more abstract concepts 
with less specific associations [22]. (c) Bins for discarding trash/recyclables, where multiple 
concepts have similar associations (see Fig. 1.6) [39] 

to make the measurements more tractable [18, 19, 22, 26, 29, 38, 39]. This sample of 
colors is called the color library [22]. Figure 1.4 shows color–concept associations 
for the concepts banana, celery, sleeping, and driving [22]. The color library is the 
“UW-71” colors, which includes 58 colors uniformly sampled over CIELAB color 
space [29], plus an additional set of light colors required to include saturated yellows 
(see [22] for details). 

Color–concept associations can be measured in multiple ways, including asking 
people to make judgments of association strength [22, 26, 38, 39, 41] and imple-
menting algorithms that estimate associations from image or language databases 
[18, 19, 29, 43]. The mean associations in Fig. 1.4 were obtained by presenting 
participants with a concept at the top of the screen and a color patch below. They 
rated the association strength between each color and concept on a scale from “not at 
all” (0) to “very much” (1). Ratings near the middle of the scale (0.5) indicate a color 
was neither strongly associated nor strongly not associated with the given concept. 
For example, in the case of banana in Fig. 1.4, yellows are strongly associated, most 
blues are strongly not associated, and greens are in the middle around 0.5. 

Concepts vary in the degree to which they have strong, specific associated colors 
within a given color library [18, 24], called specificity [22]. Here we focus on cases
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Fig. 1.4 Mean color–concept association ratings for the concepts banana and celery (higher 
specificity) and sleeping and driving (lower specificity) from [22]. Data were collected by asking 
participants to rate how much they associated each color with each concept on a scale from “not at 
all” to “very much.” Thus, the middle of the scale (0.5) indicated neutral. The color library was the 
UW-71 colors, sampled over CIELAB space. Here, the colors are sorted (left to right) according to 
hue angle and chroma, with the achromatic colors placed leftmost 

when specificity is based on the mean associations across a group of participants, but 
specificity could also be defined based on a single person’s associations. Concepts 
have high specificity if they are strongly associated with some colors and weakly 
associated with the remaining colors in the color library. For example, Fig. 1.4 
shows that celery has high specificity because it is strongly associated with greens 
and is weakly associated with the remaining colors. As such, concepts with high 
specificity have “peaky” distributions of associations over the color library. In 
contrast, concepts have lower specificity if they have more uniform distributions 
over the color library. In a fully uniform distribution, all colors would be equally 
associated with the concept (i.e., equal bar heights in Fig. 1.4). As shown in Fig. 1.4, 
the concepts sleeping and driving have lower specificity than banana and celery 
because their distributions are closer to uniform. Specificity can be quantified using 
entropy [22, 24], a mathematical measure of the “peakiness” vs. uniformity of a 
distribution. 

Color–concept associations are essential to interpretations of color meanings 
in visualizations, but they are only part of the story. This brings us to inferred 
mappings. 

1.2.1.2 Inferred Mappings 

Inferred mappings are people’s expectations about the meanings of each color 
in an encoding system that maps colors to concepts. Cases arise in which people 
infer that concepts map to weakly associated colors, even when there are more
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Fig. 1.5 Illustration of the distinction between color–concept associations and inferred mapping 
from [39]. (a) Trial in which participants inferred which color mapped to the target concept trash 
(arrows and labels to the right are for illustration only and were not part of the trial). (b) Bipartite 
graph showing color–concept association strengths for concepts trash (T) and paper (P) with 
colors purple (Pu) and white (W). Thicker edges connecting each concept with each color indicate 
stronger associations. (c) Mean proportion of times participants chose each color when the target 
was paper or trash (error bars represent standard errors of the means). Participants inferred purple 
mapped to trash, even though white was more strongly associated with trash 

strongly associated options. To illustrate this point, we will walk through an example 
from Schloss et al. [39] in which participants inferred the meanings of colors on 
trash/recycling bins (see Fig. 1.5). 

During the experiment, participants were presented with pairs of unlabeled 
colored bins and were asked which bin was for disposing a target item named at 
the top of the screen. In some trials, the target item was trash (Fig. 1.5a), and in 
other trials, the target item was paper. For each target, participants saw all pairwise 
combinations of four colored bins (left/right balanced), including white (strongest 
associate with paper), dark yellow (strongest associate with trash), and red and 
purple (both weakly associated with trash and paper). The association strengths 
had been obtained from color–concept association ratings from a different set of 
participants [39] and are shown in Fig. 1.6. The association strengths for the example 
trial shown in Fig. 1.5a are represented as a bipartite graph in Fig. 1.5b. In a bipartite 
graph, edges connect each item in one set (such as colors) to all the items in another 
set (such as concepts). In this bipartite graph, the circles represent the concepts 
trash (T) and paper (P), the squares represent the colors purple (Pu) and white (W), 
and the edge connecting each concept to each color represents the color–concept 
association strength (thicker indicates stronger associations). 

Schloss et al. [39] considered two possible ways observers might approach this 
task. The first approach, local assignment, is simply to choose the color that is most 
strongly associated with the target. Local assignment would lead to inferring that 
white is for trash in Fig. 1.5. The second approach, global assignment, is to choose 
the color that optimizes assignments between all colors and concepts in the encoding 
system. To determine the optimal assignments in Fig. 1.5, we can compare the total 
goodness or “merit” of one possible assignment (e.g., T–Pu/P–W) to the alternative 
assignment (e.g., T–W/P–Pu) and determine which assignment has greater merit. 
For now, assume merit is simply color–concept association strength, but we will 
return to other definitions of merit below. The assignment that pairs trash with purple 
and paper with white has greater total merit. Thus, the global assignment approach 
would lead to inferring purple is for trash.
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Fig. 1.6 Mean color–concept association ratings for the Berkeley Color Project 37 (BCP-37) 
colors and the concepts paper, plastic, glass, metal, compost, and trash (data from [39]). Colors 
are sorted along the x-axis from weak to strong association. Error bars indicate standard errors of 
the means. The top associated colors are shared among paper, plastic, and glass and shared among 
compost and trash. Arrows point to the optimal colors for each concept using balanced merit 

Consistent with global assignment, participants reliably inferred that the purple 
bin was for trash (Fig. 1.5c), even though trash was more strongly associated with 
white. This example illustrates the distinction between inferred mappings and asso-
ciations. Associations serve as the input to global assignment, but further processing 
leads to people’s inferences about the meanings of colors in visualizations. This 
process is called assignment inference.
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1.2.2 Assignment Inference 

Assignment inference is the process by which people infer mappings between 
visual features and concepts in an encoding system [39]. The process was given this 
name because it is analogous to an assignment problem in the field of optimization. 
Assignment problems are models for assigning items in one set to items in 
another set in a manner that optimizes merit, or the “goodness,” of the assignment 
[5, 17, 23]. Goodness is defined with respect to a given goal. For example, if the goal 
is to assign swimmers to strokes in a relay race to minimize time to complete the 
race, merit is the time it takes for each swimmer to complete each stroke. Solving 
an assignment problem involves finding the best pairings such that the overall merit 
across all pairs is as good as possible (i.e., the total time is as short as possible). The 
question is what determines merit in assignment inference? 

In our discussion of the trash/paper recycling experiment illustrated in Fig. 1.5, 
we alluded to the notion of merit in assignment inference as association strength 
between each color and concept. We explained that global assignment maximizes 
association strength over possible assignments, even if that means assigning con-
cepts to weakly associated colors when there are more strongly associated options. 
However, association strength is only one possible way to specify merit, and it is 
not necessarily the type of merit that humans use in assignment inference. 

To study merit in assignment inference, Schloss et al. [39] assumed the role of 
the designer and created two different color sets (a.k.a. palettes) for trash/recycling 
bins (Fig. 1.3c). To create the palettes, they used two methods of defining merit 
and solved an assignment problem to determine the optimal color set within each 
definition. The logic of their experiment was that observers would be better at 
interpreting palettes created using a definition of merit that more closely matched 
merit in assignment inference. Thus, identifying which palette was easier to interpret 
would provide insight into the type of merit in assignment inference. 

The two color palettes were designed for six types of trash/recyclables (paper, 
plastic, glass, metal, compost, and trash), using two definitions of merit: isolated 
merit and balanced merit. Both types of merit were specified as follows, using the 
color–concept association data shown in Fig. 1.6. 

Isolated Merit Isolated merit for a given color–concept pair is simply the asso-
ciation strength between that color and that concept. It is called “isolated” merit 
because it is determined by the association between each color and concept in 
isolation, without accounting for other colors or concepts in the encoding system. 
When an assignment problem determines the optimal pairings under isolated merit, 
it selects color–concept pairs such that the total association strength across all 
pairings is as large as possible. 

The color palette generated using isolated merit is shown in Fig. 1.7a. Note that 
paper, plastic, and glass share similar top associated colors, and compost and trash 
share similar top associated colors (Fig. 1.6). As a result, the colors assigned to 
those concepts were strongly associated with more than one concept in the encoding 
system. For example, plastic was associated with its assigned color, light gray (A3),
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Fig. 1.7 Color palettes and corresponding plots showing the mean proportion of times participants 
chose each color for each concept when palettes were generated using (a) isolated merit or (b) 
balanced merit. Arrows point up to the correct color, specified by the optimal solution to the 
assignment problem using each definition of merit. Error bars represent standard errors of the 
means. Data are from [39] 

but also was strongly associated with white (WH), the color assigned to paper, and 
light blue (LB), the color assigned to glass. These observations highlight a potential 
problem with simply maximizing association strength: it may introduce confusablity 
when multiple colors are associated with multiple concepts in the encoding system. 

Balanced Merit Balanced merit for a given color–concept pair is computed as 
the association strength for that color–concept pair, minus the association strength 
for the color with the next most strongly associated concept. This definition of 
merit is called “balanced merit” because it balances prioritizing color–concept 
association strength while avoiding confusability that can arise when a color is 
strongly associated with multiple concepts in the encoding system. When an



1 Color Semantics for Visual Communication 15

assignment problem determines the optimal pairings under balanced merit, it makes 
the association difference across all color–concept pairs as large as possible. 

This method of defining merit can lead to assigning a concept to a weakly 
associated color, which can occur if the color is more associated with that concept 
than with all other concepts in the encoding system. For example, the color palette 
generated using balanced merit is shown in Fig. 1.7b. In this palette, plastic was 
assigned to red (SR), even though plastic is weakly associated with red, because red 
is more associated with plastic than with the other concepts (Fig. 1.6). 

We note that isolated merit and balanced merit result in the same assignments 
when there are only two colors and two concepts in the encoding system. However, 
they can diverge when the number of colors and concepts is larger than two, as in 
the present experiment. 

During the experiment, participants were presented with bins from each palette 
(between subjects) along with the list of six concept labels. They were asked 
to drag the label to the appropriate bin color. Accuracy was specified as the 
optimal assignment between colors and concepts according to the assignment 
problem within each source of merit. Figure 1.7 shows the mean proportion of 
times participants chose each color for each concept for the isolated merit palette 
(Fig. 1.7a) and the balanced merit palette (Fig. 1.7b). The optimal color for each 
concept is indicated by an arrow pointing up to the corresponding bar. 

Participants were significantly more accurate for the balanced merit palette than 
the isolated merit palette, even though some of the associations were weaker in 
the balanced merit palette. For the isolated merit palette, they showed confusion, 
especially among white, light gray, and light blue for glass and among dark orange 
and dark yellow for compost and trash. For the balanced merit palette, participants 
consistently identified the correct assignments. 

These results suggest that merit in assignment inference is closer to balanced 
merit than isolated merit. That is, during assignment inference, observers account 
for the difference in associations, and not just maximal associations when inferring 
mappings between colors and concepts. These results imply that if a designer aims 
to create color palettes that are easy for people to interpret, it is better to prioritize 
association difference rather than association strength. 

1.2.3 Semantic Discriminability 

Examining the data in Fig. 1.7, it can be seen that participants were more likely to 
infer “unique mappings” between colors and concepts in Fig. 1.7b than in Fig. 1.7a. 
That is, for each concept, there was one color that was chosen more often than 
all the other colors in Fig. 1.7b, but multiple colors were chosen similarly often in 
Fig. 1.7a. This ability to infer unique mappings is called semantic discriminability 
[22, 38]. This idea can be understood by analogy with perceptual discriminability. 
Perceptual discriminability concerns the degree to which observers can see the 
difference between different colors, whereas semantic discriminability concerns the
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Fig. 1.8 Color palettes with high vs. low semantic discriminability. (a) Example trials from [38] 
in which participants inferred which color corresponded to target concept indicated at the top of 
the screen. Here, the target was watermelon; on other trials, the target was mango. The average 
accuracy is indicated below each example trial. (b) Bipartite graphs showing merit between 
watermelon (W) and mango (M) and each color, corresponding to the trials above in (a). Black 
edges correspond to the optimal assignment. Semantic distance (. ΔS) for each color pair is 
indicated below the corresponding bipartite graph 

degree to which observers can discern the difference in meaning between different 
colors. For a set of colors to be semantically discriminable, they must first be 
sufficiently perceptually discriminable. That is, if colors appear the same, they 
cannot communicate different meanings [38]. 

One may presume that semantic discriminability is the same thing as inter-
pretability, but there is an important distinction. Semantic discriminability concerns 
an observer’s inferred mapping, regardless of the encoded mapping specified by 
the designer. In contrast, interpretability concerns how well observers can discern 
the encoded mapping specified by the designer. To understand this distinction, 
consider the bar chart in Fig. 1.8a (left). The chart represents data about the concepts 
watermelon and mango using two different bar colors, red and orange. Given these 
two colors and concepts, one would readily infer the mapping that watermelon 
goes with red and mango goes with orange, not the opposite mapping. As such, 
these two colors have high semantic discriminability in the context of the concepts 
watermelon and mango. Now, a designer may choose to encode watermelon using 
red and mango using orange (matching the observer’s inferred mapping), or they 
may encode watermelon with orange and mango with red (opposite of the observer’s 
inferred mapping). In both cases, semantic discriminability of the colors is the same, 
but interpretability will be greater for the pairing that matches the observer’s inferred 
mapping (watermelon-red/mango-orange). 

Schloss et al. [38] developed a method to quantify semantic discriminability 
using a metric called semantic distance (. ΔS). Semantic distance is a measure of 
how likely observers are to infer one assignment over other potential assignment(s) 
in an encoding system. Figure 1.8 illustrates examples of color pairs with large
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and small semantic distance, in the context of the concepts watermelon (W) and 
mango (M). The bipartite graphs in Fig. 1.8b represent the association strength 
between each of the two concepts with each of the two colors, corresponding to 
the visualizations directly above (Fig. 1.8a). The colors in Fig. 1.8 (left) have large 
semantic distance (.ΔS = 0.98) because the W-red/M-orange assignment has far 
greater merit than the W-orange/M-red assignment. Even if these associations vary 
due to noise, the difference in merit between the two assignments is sufficiently 
large such that W-red/M-orange will remain the optimal assignment (assuming 
a magnitude of variability that is typical of this kind of association data). The 
colors in Fig. 1.8 (right) have small semantic distance because the W-red/M-green 
assignment has only slightly greater total merit than the alternative assignment. If 
the associations varied somewhat due to noise, the outcome could reverse—the 
W-green/M-red assignment could have greater merit. For formal details on how 
semantic distance is computed, see [38]. 

Having defined semantic distance, the next question is whether semantic distance 
predicts observers’ ability to interpret the meanings of colors in information 
visualizations. To address this question, Schloss et al. [38] asked participants to 
interpret the meanings of colors in bar charts with two colored bars, such as those 
in Fig. 1.8a. Each trial had a chart, along with a target concept named above, and 
participants indicated which bar (left/right) they thought corresponded to the target 
concept. Participants judged many color pairs, which varied in semantic distance 
and in perceptual distance (i.e., the difference in appearance of the two colors). 
Responses were scored as “accurate” if they matched the encoded mapping, which 
was determined as the optimal assignment using balanced/isolated merit (both are 
the same when there are two colors and two concepts). The charts did not have a 
legend, so participants did not know which response was correct during the task. 

Overall, participants were able to infer optimal mappings, but accuracy increased 
with increased semantic distance. This effect of semantic distance was independent 
of effects of perceptual distance. When perceptual and semantic distance conflicted 
(e.g., high semantic distance, low perceptual distance), semantic discriminability 
better predicted accuracy. These results suggest that semantic distance does indeed 
predict observers’ ability to interpret the meanings of colors in information visual-
izations. 

1.2.4 Assignment Inference for Abstract Concepts? 

We have established that observers can use assignment inference to interpret optimal 
mappings between colors and concrete concepts with directly observable colors 
(e.g., watermelon and mango) [38]. But, is this ability limited to concrete concepts, 
or might it extend to abstract concepts without directly observable colors (e.g., 
driving and sleeping)? 

Earlier work proposed that some concepts may be “non-colorable,” suggesting 
that such concepts cannot be meaningfully encoded using color [18, 43]. “Colorabil-
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ity” was defined with respect to individual pairs of colors and concepts. Concrete 
concepts, such as banana, celery, grape, and eggplant, were considered colorable 
because they had strong, specifically associated colors (i.e., high specificity), 
whereas abstract concepts, such as sleeping, driving, safety, and comfort, were 
considered non-colorable because they lacked strong, specific associated colors (i.e., 
low specificity). 

However, this notion of colorability concerns individual concepts alone, and we 
know from studies on assignment inference that context plays an important role. 
That is, when inferring mappings between colors and concepts, observers account 
for all concepts and colors in the scope of an encoding system, not each concept 
alone (global assignment, see Sect. 1.2.1.2). And, their ability to perform assignment 
inference depends on semantic discriminability of the colors, which concerns the 
relative associations between all colors and concepts in an encoding system, not just 
each concept alone. These previous findings imply that observers should be able 
to use assignment inference to interpret optimal mappings for abstract concepts, 
insofar as the colors used to encode those abstract concepts are semantically 
discriminable. 

Mukherjee et al. [22] tested this hypothesis in an experiment in which partici-
pants interpreted the meanings of colors in visualizations representing data about 
abstract or concrete concepts.1 During the experiment, participants were presented 
with bar charts along with a set of four concept labels, as shown in Fig. 1.9a. Their 
task was to drag the labels from the top of the chart and place them under the 
colored bar that they thought corresponded to each concept. Figure 1.9a shows two  
example trials, one in which the concepts were all abstract, and the other in which 
the concepts were all concrete (in other trials abstract and concrete concepts were 
sometimes mixed). 

Each concept appeared in four different concept sets. For example, the concept 
sleeping appeared with driving, safety, and comfort (set 1), with driving, grape, and 
banana (set 2), with driving, peach, and cherry (set 3), and with driving, efficiency, 
and speed (set 4) (Fig. 1.10). For each concept set, the colors of the bars were 
determined based on the optimal assignment using balanced merit, which selected 
the four best colors from the UW-71 color library to assign to each of the four 
concepts. 

Overall, participants were able to interpret the optimal mapping between colors 
and concepts. For example, Fig. 1.9b shows the responses for the stimuli from 
Fig. 1.9a, plotting the proportion of times participants chose each color for each 
concept. The arrows below the x-axis point up at the correct color for each concept. 
Participants consistently chose the correct color for both the abstract and concrete 
concept sets.

1 The abstract concepts had relatively low specificity (close to uniform color–concept association 
distributions), and the concrete concepts had high specificity (peaky color–concept association 
distributions), but that correspondence is not always the case (e.g., anger is an abstract concept but 
has high specificity). 
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Fig. 1.9 Examples of (a) experiment stimuli and (b) corresponding data for abstract concepts (left) 
and concrete concepts (right) from Mukherjee et al. [22]. During the task, participants dragged 
each concept name to the colored bar that they thought corresponded to each concept. The mean 
proportion of times participants chose each color for each concept is shown in (b) with arrows  
pointing up to the correct color for each concept. Error bars represent standard errors of the means, 
and the horizontal gray line represents chance 

However, the ability to interpret the correct color for a given concept varied 
depending on semantic discriminability. This relationship is shown in Fig. 1.10. 
The plots show the proportion of times that participants chose the correct color 
for the target concepts sleeping (left) and banana (right). Each plot has four points, 
corresponding to each of the four concept sets in which the target concept appeared. 
The x-axis represents the semantic discriminability between the correct color and 
the other colors in the palette.2 The positive slope of the best-fit lines through the 
points illustrates that accuracy increased with increased semantic discriminability. 
For example, in set 1, participants were highly accurate at assigning yellow to 
banana because the other concepts in the set (eggplant, celery, and grape) did not 
compete with banana for yellow. Yet, in set 4, they were less accurate at assigning 
yellow to banana because corn competed with banana for yellow. This competition 
led to yellow being less semantically discriminable from the other colors in set 4

2 Here, when we are discussing semantic discriminability, we are referring to a metric called 
“semantic contrast.” Unlike semantic distance, which quantifies the semantic discriminability of 
a color palette as a whole, semantic contrast quantifies the distance between a single color and all 
other colors in the palette. Computational details of these two metrics can be found at [22]. 
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Fig. 1.10 Top: The four concept sets and color palettes for the concepts sleeping (left) and banana 
(right) in Mukherjee et al. [22]. Bottom: The proportion of correct responses for the target concepts 
sleeping (left) and banana (right) as a function of semantic discriminability of the colors in the 
color palettes. Each point corresponds to each of the four concept sets in which the target concepts 
appeared. Error bars represent standard errors of the means, and the black lines represent the best-
fit lines through the data points 

compared to set 1. Figure 1.10 shows the data for only two out of the 16 concepts 
tested in the experiment, but the pattern is representative of the full datasets (see 
[22]). 

The results of this experiment suggest that people can use assignment inference 
to infer optimal mappings for both concrete and abstract concepts. Yet, the ability to 
do so depends on the semantic discriminability of the colors, which is determined 
based on all of the colors and concepts in an encoding system. In short, context 
matters. 

1.2.5 Semantic Discriminability Theory 

Thus far, we have presented evidence that semantic discriminability is important 
for interpreting the meanings of colors in visualizations. The next question is, 
what determines whether it is possible to produce semantically discriminable colors 
for a set of concepts? To address this question, Mukherjee et al. [22] proposed a 
theory called semantic discriminability theory. The theory states that the ability 
to produce semantically discriminable colors for a set of concepts depends on the 
difference between the color–concept association distributions for those concepts. 

This theory is illustrated in Fig. 1.11, which shows three pairs of concept sets, 
one set with very different associations (peach and celery), one with moderately
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Fig. 1.11 Color–concept association distributions for concept sets with large, medium, and 
small distribution differences, which result in high, medium, and low capacities for semantic 
discriminability, respectively. The top two rows show color–concept association distributions for 
the 71 colors in the UW-71 color library. The bottom row shows the frequency of color pairs at 
varying degrees of semantic distance (. ΔS). An arrow points to the maximum semantic distance 
(max . ΔS) for each concept set. Figure adapted from [22] 

different associations (driving and comfort), and one with very similar associations 
(eggplant and grape). Below each set of color–concept association distributions is a 
histogram showing the semantic distance between all pairs of colors in the UW-71 
color library for that concept set. Peach and celery, which have a large distribution 
difference, have many color pairs with high semantic discriminability, and the 
maximum semantic distance (max . ΔS) was a perfect semantic distance of 1. This 
maximum semantic distance is called the “capacity” for semantic discriminability. 
Examining the other two concept pairs, driving and comfort (medium distribution 
difference) have medium capacity for semantic discriminability, and eggplant and 
grape (small distribution difference) have low capacity for semantic discriminability. 
Note that eggplant and grape have far higher specificity (peakier distributions) than 
driving and sleeping, but the capacity for semantic discriminability is lower for the 
pair eggplant and grape because the association distributions for eggplant and grape 
are too similar to produce semantically discriminable colors. 

The relation between capacity for semantic discriminability and distribution dif-
ference shown in Fig. 1.11 highlights only three concept pairs, but Mukherjee et al. 
[22] conducted a systematic study of this relationship for all pairwise combinations 
of 20 concepts (190 concept pairs in total). The concepts included fruits (peach, 
cherry, grape, banana, apple), vegetables (corn, carrot, eggplant, celery, mushroom), 
activities (working, leisure, sleeping, driving, eating), and properties (efficiency, 
speed, safety, comfort, reliability). In this full dataset, capacity was strongly
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correlated with distribution difference (.r = 0.93). Capacity was also correlated with 
mean specificity of the individual concepts (.r = 0.82), but significantly less so than 
with distribution difference. When effects of distribution difference and specificity 
were evaluated in a single model, only distribution difference was a significant 
predictor of capacity (see [22] for computational details). Aspects of these results 
for sets of two colors and concepts also extended to sets of four colors and 
four concepts. These results support semantic discriminability theory, emphasizing 
the importance of considering the difference between color–concept association 
distributions, independent of the specificity of each concept’s distribution alone. 

Semantic discriminability theory was originally formulated and studied with 
respect to color. However, Mukherjee et al. [22] suggested it as a general theory with 
potential to extend beyond color to other visual features (e.g., size, shape, texture) 
and perceptual features in other modalities (e.g., sound, odor, touch). 

1.2.6 Summary and Open Questions for Visualizations 
of Categorical Information 

We began Sect. 1.2 by explaining that the notion of inferred mappings is dis-
tinct from color–concept associations. Using assignment inference, observers infer 
globally optimal assignments between colors and concepts, even if that means 
assigning a color to a weakly associated concept. We then provided evidence 
that the ability to perform assignment inference to interpret optimal assignments 
depends on the semantic discriminability of the colors. Observers can successfully 
perform assignment inference to interpret optimal assignments for abstract and 
concrete concepts, as long as the colors representing those concepts are semantically 
discriminable. Finally, we discussed semantic discriminability, a theory on the 
constraints for producing semantically discriminable colors for a given set of 
concepts. Supporting the theory, capacity for semantic discriminability increases 
with increased differences between the color–concept association distributions for 
the set of concepts. The series of studies in this section emphasize that people’s 
inference about the meanings of colors is highly context-specific, depending on the 
other colors and concepts in the scope of the encoding system. 

Although much has been learned from research on color semantics for categorical 
information, many open questions are yet to be answered. Here, we highlight two 
such questions. 

Cultural Effects? Color–concept associations serve as input to assignment infer-
ence, which result in interpretations of the meanings of colors in visualizations 
[36]. If this input differs due to cultural differences in color–concept associations 
[13, 14, 49], then the output (interpretation of the meanings of colors) should 
also differ. However, if the process underlying assignment inference is a general 
cognitive mechanism, and the input is known, then it should be possible to 
predict cultural differences in the output. Cross-cultural experiments are needed to
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test if assignment inference is actually a culturally general cognitive mechanism, 
and if the current model of assignment inference [22, 39] can predict cultural 
similarities/differences in inference about the meanings of colors in information 
visualizations. 

This logic extends to semantic discriminability theory. The theory implies that 
distribution difference will predict capacity for semantic discriminability in any 
culture, as long as the association distribution data reflect the associations held by 
a given culture. But, if the color–concept associations collected from one culture 
are used to predict capacity for another culture that has different color–concept 
associations, then the predictions might be misleading and the palettes generated 
might not be semantically discriminable for those who are a part of that second 
culture. Future research is needed to test whether cultural variations in color– 
concept association distribution differences predict cultural variations in capacity 
for semantic discriminability. 

Extension to Other Perceptual Features? The work described in this section 
focused on color, but semantic discriminability theory is broadly defined to apply 
to other perceptual features in vision (e.g., shape, visual texture, orientation, size) 
and features in other modalities (e.g., sounds, odors, tactile textures) [22]. However, 
questions remain as to how to effectively sample perceptual features in these other 
domains to test this hypothesis, and which other kinds of perceptual features will 
have systematic and distinct enough associations with concepts to support semantic 
discriminability. 

1.3 Color Semantics for Continuous Data 

In Sect. 1.2, we focused on color semantics for visualizations representing categori-
cal information. In Sect. 1.3, we turn to factors that contribute to color semantics 
for visualizations of continuous data, such as the colormap data visualizations 
(“colormaps” for short) from Fig. 1.2b. In colormaps, gradations of color are 
mapped to gradations of quantities across a spatial representation [12]. The spatial 
representation could take a variety of forms depending on the type of data, including 
geographical maps to show climate data across regions of the world, a brain map to 
show neuroimaging data across different regions of the human brain, or a matrix to 
show gene expression co-occurrences in different samples of organisms. 

Traditionally, the literature has drawn a distinction between the kinds of factors 
that influence inferred mappings for categorical information and continuous data. 
For categorical information, the emphasis has been on “direct” color–concept 
associations (Sect. 1.2), whereas for continuous data, the emphasis has been on 
“relational” associations. Direct color–concept associations (or direct associations 
for short) are just the color–concept associations we discussed in Sect. 1.2, but here 
we call them “direct” associations to distinguish them from “relational associa-
tions.” Unlike direct associations, which are the degree to which an individual color



24 K. B. Schloss et al.

is associated with an individual concept, relational associations are correspondences 
between relational properties of visual features and relational properties of concepts 
[40]. For example, observers have a dark-is-more bias, inferring that darker colors 
map to larger quantities [4, 8, 21, 37, 40, 47]. The dark-is-more bias is relational 
because it concerns the relative lightness within a sequence of colors, rather than 
the lightness of any individual color alone. 

Although previous work distinguished factors relevant for visualizations of 
categorical information and continuous data, recent work by Schoenlein et al. [40] 
suggests that inferred mappings for continuous data visualized in colormaps are 
influenced by both direct and relational associations. The relative contribution of 
these different factors can be understood as different sources of merit in assignment 
inference. In the following sections, we will first discuss different kinds of relational 
associations for colormaps and then explain how relational and direct associations 
can all be considered as sources of merit in assignment inference for colormap data 
visualizations. 

1.3.1 Relational Associations for Colormaps 

Several types of relational associations can contribute to inferred mappings for 
colormap data visualizations (Table 1.1). The effects of relational associations on 
inferred mappings are governed by at least two main principles: 

1. Applicability principle: A relational association can only be activated if it is 
applicable to the visualization, given the perceptual properties of the visualiza-
tion. 

2. Combination principle: If multiple relational associations are activated, they 
will combine to produce the inferred mapping. Sometimes relational associations 
work together and sometimes they conflict. When they conflict, they may cancel 
each other or some relational associations may dominate others, depending on 
their relative strength. 

In the following sections, we will discuss empirical evidence for each type of 
relational association listed in Table 1.1. In doing so, we will consider perceptual 
properties that determine whether each relational association applies to a given 
visualization, and how relational associations combine when multiple are activated 
at the same time. 

1.3.1.1 Structure Preservation 

Structure preservation is a relational association in which structure among percep-
tual features corresponds to structural properties among concepts to which they 
are mapped [3, 11, 12, 20, 27, 46, 50]. One example of such structure is the 
progression of lightness (light to dark) and the progression of quantity (small to
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Table 1.1 Types of relational associations between visual features and quantity 

Association type Description Related references 

Structure preservation Structure among perceptual features 
corresponds to structural properties 
among concepts to which they are 
mapped. 

[3, 11, 12, 20, 27, 46, 50] 

Dark-is-more bias Regions that appear darker map to 
larger quantities. 

[4, 8, 21, 37, 40, 47] 

Opaque-is-more bias Regions that appear more opaque map 
to larger quantities. 

[1, 35, 37] 

Hotspot-is-more bias Regions closer to the center of 
“hotspots” map to larger quantities. 

[42, 47] 

High-is-more bias Colors higher up on vertically oriented 
legends map to larger quantities. 

[12, 37, 47, 50] 

Structure Preserving Not Structure Preserving 
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Fig. 1.12 Example colormap assigning lightness (light to dark) to quantities (1–4) with legends 
that maintain structure preservation (left) and legends that do not maintain structure preservation 
(right). Figure adapted from [40] 

large). For example, Fig. 1.12 shows a colormap and four accompanying legends 
specifying encoded mappings that could correspond to the colormap. The left two 
encoded mappings are structure-preserving because gradations of lightness align 
with gradations of quantity. From the perspective of structure preservation, both of 
these encoded mappings (dark-more and light-more encodings) are equally good. 
However, the right two encoded mappings are not structure-preserving because 
lightness is scrambled with respect to quantity. 

Structure preservation is applicable whenever there is structure among the 
concepts that can be preserved by the visual features that represent those con-
cepts. Structure preservation is always applicable when discussing continuous data 
because the data have graded structure. Structure preservation is assumed in all of 
the rest of the relational associations we will discuss next. 

1.3.1.2 Dark-is-More Bias 

The dark-is-more bias leads to the inference that darker colors map to larger 
quantities [4, 8, 21, 37, 40, 47]. It is applicable when colors in the color scale vary in 
lightness. When we say “lightness,” we mean the perceptual dimension of lightness, 
going from dark to light (e.g., L* in CIELAB space). We note that in HSB color
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space, both the “saturation” (S) and “brightness” (B) dimensions vary in perceptual 
lightness, so when some discuss color scales defined by saturation variation, there is 
still lightness variation. Although it is possible for color scales to have no lightness 
variation (e.g., vary only in hue or perceptual saturation), in practice, color scales 
tend to vary in lightness, which helps perceive spatial structure in data [15, 34, 52]. 
Thus, the dark-is-more bias is almost always applicable to inferred mappings for 
colormaps. 

Early evidence for the dark-is-more bias comes from studies in which partic-
ipants were shown colormaps without legends and were asked to indicate which 
regions represented “more” (Fig. 1.13a) [8, 21]. Participants systematically chose 
the darker regions, suggesting they inferred that darker colors mapped to larger 
quantities. 

More recent evidence comes from studies in which participants were shown 
colormaps with legends specifying the encoded mapping. Participants were asked to 
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inferred mappings)
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correctly interpret the colormap according to the legend [37]. On half of the trials, 
the legend specified dark-more encoding, and on the other half, the legend specified 
light-more encoding (Fig. 1.13b). Also, on half of the trials, “greater” was at the top 
of the legend, and on half of the trials, it was at the bottom. Participants therefore 
had to read the legend on every trial to determine the encoded mapping. Participants 
were faster at correctly interpreting the colormap when the legend specified dark-
more encoding, providing further evidence for the dark-is-more bias. 

We will discuss what happens when the dark-is-more bias combines with each of 
three other relational associations in the following sections. 

1.3.1.3 Opaque-is-More Bias 

The opaque-is-more bias leads to the inference that regions appearing more opaque 
map to larger quantities. This bias is only applicable when regions of the colormap 
appear to vary in opacity. The percept of opacity variation can be achieved by 
starting with a colored region and decreasing its alpha in a series of steps so that 
more and more of the background becomes visible through the region’s surface 
[35]. Functionally, this amounts to interpolating between the color of that region 
and the color of the background (Fig. 1.14). This interpolation can vary along the 
perceptual dimensions of lightness, as described above in Sect. 1.3.1.2, hue, chroma, 
or any combination therein. 

Apparent opacity variation therefore depends not only on properties of the color 
scale used to create the colormap, but also properties of the background. Schloss et 
al. [37] developed a metric for quantifying apparent opacity variation, called the 
opacity variation index. It is computed for a given color scale and background 
by: (1) identifying the endpoint of the color scale that contrasts most with the 
background, (2) drawing a line between the color of that region and the color of 
the background region in CIELAB space, (3) calculating the distance between each 
color on the color scale and its projection onto the line, and (4) computing the root 
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Fig. 1.14 Black, white, and blue squares are displayed on different backgrounds to show how 
their appearance changes with opacity variation. The squares in the top row are opaque, and they 
decrease in opacity in each sequential row below. Colored squares are rendered invisible when they 
match the color of the background, but they are included in the diagram for completeness
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Fig. 1.15 Opacity variation in colormap visualizations. (a) Mean response times (RTs) to correctly 
interpret dark-more vs. light-more encodings of colorscales varying in opacity when presented 
on a white vs. black background. Error bars represent standard error of the means. (b) Plots in 
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background. Figure adapted from [37] 

mean-squared error of those distances3 (Fig. 1.15b and c). This method is only an 
initial approach to quantifying apparent opacity variation in colormaps and likely 
can be improved upon in future work. Nonetheless, it was effective at predicting 
human performance, as we will discuss next. 

Researchers have long considered that the background could have an effect on 
people’s inferred mappings for colormaps, but this notion was framed in terms 
of contrast with the background [21]. For example, McGranaghan [21] presented

3 As specified in [37], the opacity variation index is defined as .log(z + 1), where z is the root 
mean-squared error between each point on the color scale (square markers in Fig. 1.15b and c) and 
the line between the highest-contrast color and the background (circle markers in Fig. 1.15b and  
c). Smaller values correspond to greater perceptual evidence for opacity variation. 
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participants with partial maps of the United States, with states colored in various 
shades of blue (Fig. 1.13a). Maps were shown on a white, gray, or black background. 
McGranaghan hypothesized that participants would infer dark meant more on a 
light background, but light meant more on a dark background, in a contrast-is-
more bias. The results showed that participants inferred dark meant more on all 
three backgrounds, though the effect was weaker on the black background. This 
was taken as evidence against the existence of a potential contrast-is-more bias. 

In a subsequent study examining the effects of the background, Schloss et al. 
[37] presented participants with colormaps of fictitious data about alien animal 
sightings on white or black backgrounds. The color scales were standard scales 
used in visualization (Autumn, Hot, and Gray from MATLAB, and ColorBrewer 
Blue). As described in Sect. 1.3.1.2, each colormap had a legend, and participants 
were asked to interpret the colormap by reading the legend and indicating whether 
there were more alien animal sightings early or late in the day (Fig. 1.13b). 

The effect of the background lightness depended on the color scale (Fig. 1.15a). 
For Autumn and Hot, the background had no effect, and responses were consistent 
with a dark-is-more bias on both white and black backgrounds. For ColorBrewer 
Blue, the background had a moderate effect, but responses were still consistent 
with a dark-is-more bias on both the black and white background (similar to what 
McGranaghan [21] reported). For Gray, the background had a larger effect that 
trended toward inferences that lighter colors meant more. The authors were initially 
puzzled by why the background mattered for some color scales and not others, 
until they realized that the colormaps differed in how much the regions appeared to 
vary in opacity. Thus, they developed the opacity variation index described above to 
test whether these effects could be predicted by apparent opacity variation. Overall, 
there was a bias for participants to be faster when the legend specified dark-more 
encoding than light-more encoding (dark-is-more bias), but this was modulated by 
opacity variation in a manner consistent with an opaque-is-more bias. 

This brings us to our first consideration of the combination principle. On a white 
background, the dark-is-more bias and opaque-is-more bias work together—the 
darker region is also the more opaque region, so response times were especially fast 
for dark-more encoding than light-more encoding. On a black background, these 
two biases conflict—the darker region is the less opaque, more transparent region. 
Under such conflicts, if the opacity variation index was strong (Gray color scale), 
the opaque-is-more bias tended to override the dark-is-more bias when combining 
to produce the inferred mapping. When the index was moderate (ColorBrewer 
Blue color scale), the opaque-is-more bias dampened the effect of the dark-is-
more bias but did not cancel it out. This finding aligns with the results reported 
by McGranaghan [21]. Finally, when the index was weak (Autumn and Hot), and 
therefore not applicable, there was no opaque-is-more bias activated to influence 
the inferred mapping. One can avoid conflicts between the dark-is-more bias and 
opaque-is-more bias by either: (1) presenting colormaps on light backgrounds, such 
that the two biases work together, or (2) avoiding colormaps that appear to vary in 
opacity when displayed on a dark background.
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Lower contrast 
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Less noise 

Dark 
hotspot 
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Fig. 1.16 Colormaps with dark (top) and light (bottom) hotspots. Colormaps on the right have 
higher lightness contrast and less noise in the underlying dataset than colormaps on the left 

1.3.1.4 Hotspot-is-More Bias 

The hotspot-is-more bias leads to the inference that regions closer to the center of 
“hotspots” map to larger quantities [42, 47]. It is applicable when there is spatial 
structure in the data that looks like a hotspot (e.g., concentric rings), such as in 
Fig. 1.16. 

Until now, in this section, we have discussed colormaps in which there was little 
spatial structure in the data to provide a cue to the locus of larger quantities (e.g., 
grids of randomly colored squares [37]). However, Schott [42] raised the possibility 
that color-based biases (e.g., dark-is-more bias) may not influence interpretations of 
colormaps when there are strong spatial cues to the locus of large quantities, such as 
hotspots. Hotspots are properties of datasets in which the region with extreme values 
(very high or very low values) is surrounded by roughly concentric regions with less 
and less extreme values. These patterns are characteristic of fMRI and EEG signals 
from neuroimaging data and storm patterns in meteorological data. 

Sibrel et al. [47] tested whether a hotspot-is-more bias exists, and if so, whether it 
overrides the influence of the dark-is-more bias. They asked participants to interpret 
colormaps containing hotspots, such as those in Fig. 1.16, left. The participants were 
told the colormaps represented data about alien animal sightings in different regions 
of a planet, and their task was to press the left/right arrow key to indicate whether 
there were more sightings on the left or right of the region based on the legend. On 
one half of the trials, the hotspot was light, and on the other half, the hotspot was 
dark (hotspot location and darker region location were left/right balanced across 
trials). In this initial experiment, participants were faster at responding when the 
legend indicated dark was more (dark-is-more bias), with no effect of whether the 
hotspot was light or dark (no hotspot-is-more bias). 

Surprised by this result, Sibrel et al. [47] conducted a series of subsequent 
experiments to see if they could find evidence for a hotspot-is-more bias and to 
see if they could make it strong enough to override the dark-is-more bias. First they 
modified the trial structure such that the hotspot was a reliable cue to the locus of
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the larger quantity. That is, rather than the legend specifying that the colors in the 
hotspot mapped to more on 50% of the trials, the legend was biased to indicate that 
the hotspot mapped to more on 77% of the trials. Here, they found evidence for a 
hotspot-is-more bias. When the hotspot was dark, RTs were faster for dark-more 
encoding than light-more encoding, consistent with both the dark-is-more bias and 
the hotspot-is-more bias. However, when the hotspot was light, causing a conflict 
between the dark-is-more bias and hotspot-is-more bias, the difference in RTs was 
significantly weaker. Still the hotspot-is-more bias did not override the dark-is-more 
bias. To get the hotspot-is-more bias to slightly, but significantly, override the dark-
is-more bias, it was necessary to not only have the hotspot be a reliable cue, but also 
to make it even more perceptually salient through increasing lightness contrast and 
reducing visual noise in the image (Fig. 1.16, right). 

These results suggest that color-based biases are powerful contributors to inferred 
mappings, which cannot be merely dismissed when there is strong spatial structure 
in the data. 

1.3.1.5 High-is-More Bias 

The high-is-more bias leads to the inference that colors positioned higher up on a 
vertically oriented legend map to larger quantities. The high-is-more bias is only 
applicable when colormaps have vertically oriented legends, which is not always 
the case in experiments [21] or in practice, as documented by Christen et al. [6]. 
The high-is-more bias is part of a more general expectation that larger amounts will 
be displayed higher in space [12, 50]. 

Evidence supporting the high-is-more bias comes from studies showing that 
response times to correctly interpret colormaps are faster when “greater” is at the 
top of the legend than at the bottom [37, 47] (Fig. 1.13b). Moreover, the dark-is-
more bias has a larger influence when “greater” is at the top of the legend than at the 
bottom. One way to view this finding is that when these two biases work together 
(i.e., the darker region encodes “more” and “more” is represented at the top of the 
legend), inferences are clearer and interpretation is especially easy, but once these 
biases conflict, inferences become muddled and interpretation is generally harder. 

In Sect. 1.3.1, we have highlighted several kinds of relational associations that 
can contribute to inferred mappings, when they are applicable. We also described 
what can happen to inferred mappings when different sources of relational associ-
ations combine and which types of relational associations tend to dominate when 
different types conflict. Ultimately, a goal in this line of work is to construct 
a comprehensive model to predict people’s inferred mappings for information 
visualizations, while accounting for all applicable factors for a given type of 
visualization. Next, we discuss an initial step toward such a model.
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1.3.2 Assignment Inference for Visualizations of Continuous 
Data 

Until now in this chapter, we have discussed distinct factors that contribute to 
inferred mappings for different kinds of visualizations: direct color–concept asso-
ciations for visualizations about categorical information and relational associations 
for visualizations of continuous data. However, recent work by Schoenlein et al. 
[40] has bridged these areas by extending the framework of assignment inference 
previously established with visualizations of categorical information (Sect. 1.2.2) to  
visualizations of continuous data. Their approach is illustrated in Fig. 1.17. 

During their study, participants were presented with colormaps such as those 
in Fig. 1.17 (left). The colormaps represented fictitious data about environmental 
concepts, such as the amount of ocean water in different counties. The task 
was to indicate where there was more of the concept, on the left or right side 
of the map. There was no legend, so participants responded according to their 
inferred mappings. For both colormaps in Fig. 1.17, the dark-is-more bias implies 
participants should infer the darker side represents more ocean water. However, 
direct associations imply different responses for the top and bottom colormaps. For 
the top colormap, direct associations imply they will choose the darker side because 
ocean water is more associated with dark blue than with light brown (congruent 
with the dark-is-more bias). For the bottom colormap, direct associations imply that 
participants will choose the lighter side because ocean water is more associated with 
light blue than with dark yellow (incongruent with the dark-is-more bias). How will 
participants respond? 

This problem can be considered through the framework of assignment infer-
ence. Direct and relational associations are distinct sources of merit, and inferred 
mappings are computed over the weighted combination of these two sources of 

Dark-is-More BiasDirect AssociationsMore ocean water on the left/right?

 Congruent 

Incongruent 

Combined Merit 

+

=+ 

Sources of Merit in Assignment Inference 

wA wD 

wA wD 

Example Trials

-O +O -O +O -O +O

-O +O -O +O -O +O 

Left Right 

Left Right 

=  

Fig. 1.17 Example trials from Schoenlein et al. [40] in which participants inferred which region 
of colormaps (left/right) represented more of the domain concept ocean water. Inferences can be 
predicted by simulating assignment inference using a weighted combination of multiple sources of 
merit (direct associations and dark-is-more bias), in cases when they are congruent (top row) and 
incongruent (bottom row). Figure reproduced from [40]
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merit. Figure 1.17 (right) illustrates this scenario using separate bipartite graphs to 
represent merit from direct associations and the dark-is-more bias. The concepts are 
the two endpoints of the conceptual dimension (a lot of ocean water, .+O, and no 
ocean water, .−O). The two colors are the two endpoint colors from the color scale 
used to create the colormap. Although the colormaps included gradations of colors 
and quantities, the problem was reduced to the two endpoint colors and concepts. 
This simplification was possible because in their stimuli, association strength and 
lightness both varied monotonically between the two endpoint colors. Given that 
there were only two colors and two concepts, merit from direct associations could 
be treated as association strength between each endpoint color and each endpoint 
concept (as described for categorical data in Sect. 1.2.2). Merit for the dark-is-
more bias puts greater value on dark-more/light-less edges than light-more/dark-less 
edges (see [40] for details). The question was, how much weight should be put 
on direct associations (. WA) vs. the dark-is-more bias (.WD) when combining these 
sources of merit? 

Schoenlein et al. [40] addressed this question by systematically varying the 
amount of weight put on each source while simulating assignment inference, and 
determined which weighting best predicted participant’s inferred mappings. They 
found that the best combination of weights placed a . 0.7 weight on direct associations 
and a .0.3 weight on dark-is-more bias. This combined weighting was better for 
predicting participant judgments than weighting on each source of merit alone. With 
greater weight on direct associations, direct associations overrode the dark-is-more 
bias when they were in strong conflict. As such, participants inferred that lighter 
colors mapped to more ocean water in the incongruent example in Fig. 1.17. 

This study has set up a method for combining multiple sources of merit to predict 
inferred mappings in assignment inference. Of course, direct associations and the 
dark-is-more bias are only two potential sources of merit in assignment inference. 
But, Schoenlein et al.’s [40] approach can be extended to account for all known 
direct and relational sources of merit, plus new sources of merit that are yet to be 
discovered. 

1.3.3 Summary and Open Questions for Visualizations 
of Continuous Data 

In Sect. 1.3, we have discussed multiple factors that influence inferred mappings 
for colormap data visualizations: structure preservation, dark-is-more bias, opaque-
is-more bias, hotspot-is-more bias, high-is-more bias, and direct associations. We 
have also presented a framework of understanding how to combine multiple (some-
times competing) sources of merit to predict inferred mappings from assignment 
inference. 

Still, many questions remain about the nature of inferred mappings for con-
tinuous data, especially with regard to the kind of data being represented and
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the observers’ knowledge about the domain. These questions have been raised in 
previous work [6, 37, 40, 47], and we summarize them here. 

More of What? When colormaps use color to encode quantities, “more” could 
refer to more of the concept being represented, or more of the numerical values used 
to measure the concept. For example, when discussing data about response time, 
researchers often refer to instances in which people were faster (i.e., when there was 
more speed), which corresponds to smaller numbers (i.e., amount of milliseconds). 
Under such instances, people may infer that darker colors are mapped to faster 
response times, which correspond to smaller numbers. The question is whether the 
relational associations reported above, all focusing on what maps to “more,” operate 
at the conceptual or numeric level. 

Effects of Domain Expertise? Some people have expertise working with col-
ormaps in particular domains (e.g., neuroscientists, climate scientists, epidemi-
ologists). Within these domains, conventions arise, which sometimes violate the 
biases reported above. For example, in neuroimaging, there is a convention to 
use light-more encodings [6], violating the dark-is-more bias. Questions remain 
concerning whether domain experts have qualitatively different inferred mappings 
from novices, and if so, whether those differences are constrained to colormaps in 
their domain, or generalize to other colormaps on data outside their area of expertise. 

Relative Contributions of Different Sources of Merit? Schoenlein et al. [40] 
established the relative weighting to be placed on direct associations and the dark-
is-more bias when simulating assignment inference when considering only those 
two sources of merit. Open questions concern how to construct a comprehensive 
model that places appropriate weight on each source of merit that is applicable for 
any given kind of visualization. 

Addressing these questions will deepen our understanding of inferred mappings 
for colormaps, and this knowledge will help design colormaps that facilitate 
interpretability. 

1.4 Conclusion 

A central goal in the psychology of information visualization is understanding 
people’s inferences about the meanings of visual features in visualizations. If 
visualizations are designed in a manner that aligns with people’s expectations, then 
people can spend less cognitive resources on figuring out what the visual features 
mean and focus their effort on figuring out how to use the information presented in 
visualizations to think about and act on the world around them. 

It may be tempting to seek out prescriptive rules for how to use color to convey 
meaning (e.g., use color x to always mean y). However, as discussed in this chapter, 
inferences about the meanings of colors are context-dependent, contingent on the 
other colors and concepts in the encoding system, as well as spatial properties (e.g.,
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hotspot structure, height in space). Thus, fully anticipating people’s expectations 
about the meanings of colors in visualizations will require a comprehensive model 
that accounts for all factors influencing inferred mappings. Initial steps toward this 
end are showing promising results, but there is much more exciting work to be done. 

Although we do not yet have a comprehensive model, designers can still use 
the results discussed in this chapter to inform their designs. For example, evidence 
suggests that for visualizations of categorical information, it is better to use 
color palettes that maximize association difference rather than association strength. 
Ultimately, when selecting colors for visualizations, we advocate for learning as 
much as possible about the various factors that can influence people’s expectations 
about the meanings of colors. Then, use critical thought to consider which factors are 
most relevant for a particular visualization, and how to leverage them in a manner 
that makes sense for the design as a whole. 

By deepening the understanding of color semantics, this field of research is 
providing insight into the human ability to translate perceptual input into knowledge 
about the world, while providing insight into how to design visualizations that 
facilitate visual communication. 
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Chapter 2 
Theories and Models in Graph 
Comprehension 

Amy Rae Fox 

Abstract Graph comprehension is the act of deriving meaning from graphs, an 
activity grounded in visuospatial reasoning that develops through a combination 
of instruction and practice. What we know about the mechanisms of graph com-
prehension stems from interleaving lines of inquiry in statistics, computer science, 
education, and psychology dating back to the 1980s. In this integrative review, I 
describe how models of graph comprehension evolved in response to developments 
in cognitive theory, offering a critical commentary on how foundational theories 
build upon each other, extending rather than replacing theoretical claims at different 
levels of analysis. I illuminate the landscape of contemporary research, before 
concluding with an argument for the role of visualization psychology in supporting 
theoretical integration across disciplinary boundaries. 

2.1 Introduction 

There is a conceptual paradox at the center of research on graph comprehension. 
The reason we employ graphical displays is that—in relation to text or tables of 
numbers—they seem effortless. Deriving meaning from a graph is described as 
“seeing” the information, equated with the facile fluency of perception. But this 
effortless access obscures a murky, error-ridden reality. Correctly reading a graph is 
much harder than we think. After 40 years of empirical research and theory building, 
we have learned that our ability to interpret a graph is influenced by a multitude of 
interacting factors affecting the display, the individual, and the situation. 

In this chapter I offer a historical commentary on the development of graph 
comprehension research. I describe how theory in graph comprehension arose out of 
empirical research across disciplines and propose a role for visualization psychology 
in facilitating theoretical integration. This chapter will be useful for visualization 
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researchers looking to navigate the interdisciplinary milieu of graph comprehension, 
and students of behavioral and social sciences seeking a primer on this essential area 
of research. 

2.1.1 What Kind of Graph Is a Graph? 

The term external representation is used to indicate things in the world—subject to 
experience by human perception—that purposefully refer to other things. External 
representations can be constructed for any sensory modality and medium, though 
the visualization researcher is particularly interested in those employing graphics 
that can be seen on some surface. The text on this page is a visual external 
representation, with the letters of the alphabet functioning as symbols referring to 
sounds that you have learned to assemble into words from which you construct 
a certain understanding of what I intend to communicate. Similarly, a photograph 
is a visual external representation, referring via resemblance and analogy to the 
scene it depicts. A rich spectrum lies between these symbolic texts (describing the 
world) and analogous pictures (depicting the world). The design and interpretation 
of external representations belongs to the interdisciplinary realm of semiotics: the  
study of meaning-making (see Chap. 9). The focus of this chapter is a subset of 
external representations colloquially referred to as graphs (from the Greek graphē 
“writing, drawing”), charts, or plots: diagrams that convey relationships between 
sets of information via visual-spatial variables in a coordinate system (see [6, 62]). 
These are not to be confused with another set of representations referred to as 
“graphs”: collections of edges that join pairs of vertices (à la “graph theory; node-
link diagrams). Graphs are typically distinguished from maps which use scaled 
space to represent geographic relations. Both kinds of graphs belong to the larger 
class of diagrams: external representations that use space and simplified visual 
forms to convey relationships between their referents. Importantly, the use of these 
terms in empirical research is as fluid as the taxonomies that seek to structure them 
(see [25, 34, 53]). While the models and theories of comprehension reviewed in 
this chapter reference graphs specifically, it is reasonable to infer that the general 
purpose mechanisms of graph comprehension may also apply to the larger class of 
external representations. 

2.2 An Abridged History of Theory in Graph 
Comprehension 

As is often the case with interdisciplinary research, the study of graph comprehen-
sion arose from the needs of practice, rather than an invariable march of basic theory. 
The pioneering graphical inventions of Playfair, Minard, and Galton in the “golden
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age” of visualization were only made mainstream through inclusion in textbooks 
(e.g., [11]) and standards reports (e.g., [2]), through championing in professional 
texts (e.g., [78]) and essays in scholarly journals (e.g., [21, 45]). As the use of such 
“statistical graphics” spread, guidelines were needed for when and how they could 
be used to communicate effectively: a call for science to explain the art. 

The earliest empirical investigations were published in statistics [22, 24, 82] and 
consisted of discrete comparisons between bar and pie charts, testing a viewer’s 
performance in judging proportions. Concurrent work in educational psychology 
[85] tested secondary school students on their memory of facts learned from bar and 
line charts, pictographs, and tables. Studies of this kind were framed as empirical 
tests of guidelines offered in textbooks like that of Brinton [11] but were subject to 
methodological critiques of construct validity. In contextualizing their results, the 
authors tended to frame outcomes as properties of the representations themselves: 
a bar chart is more effective at [X] than a pie chart, while contemporary scholars 
would identify performance as arising from the interaction between the individual 
and representation. This subtle but important difference betrays that the focus 
of early efforts was on understanding the nature of the representations and their 
properties. 

These types of point-to-point and application-grounded studies would continue 
for decades, in the absence of frameworks, theories, or models to guide causal 
or mechanistic investigation. The work was published in statistics, educational 
psychology, computer graphics, and the burgeoning field of HCI. This would 
be the case until three developments in the 1980s paved the way for a more 
coherent, additive body of research to unfold. First, Jaques Bertin’s seminal work 
A Semiology of Graphics was translated from French to English by WJ Berg 
(under the supervision of Howard Wainer) in 1983. Bertin was the first to offer 
a concise language and structure for decomposing the questions we might ask 
about what a graphic is and how it might work. Second, post-cognitive revolution, 
substantial theories connecting visual perception to higher order cognition had been 
published in cognitive science—notably Marr [52] and Ullman [80]. Finally, the 
“mental imagery debate” was well underway, which saw leading cognitive scientists 
debating the nature of mental representation. This focuses on representation spurred 
interest in external representation and in particular how graphics are leveraged for 
problem solving and communication (e.g., [46]). 

In the sections that follow, I describe a progression of theoretical development 
that has shaped the trajectory of graph comprehension research—work that directly 
addresses the fundamental question: how are humans able to read graphs? Our 
focus will be on the elaboration of general theory—accounts of the mechanisms 
through which our interaction with statistical graphics unfold—rather than individ-
ual empirical contributions. We will see examples of theory reasoned from personal 
experience, appeal to logic, and theory reasoned from experimental evidence. 
A substantial body of theory has been developed in information visualization 
and education that addresses the application of visualization and diagrammatic 
representations more broadly, though (cognitive) theory in graph comprehension 
can be construed as its foundation, the backbone of investigations exploring specific
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phenomena observed within those interactions. Questions like what kind of graph 
is most effective for decision-making? or how can we help learners correctly 
interpret a graph? rely on general purpose mechanisms of graph comprehension, 
just as questions of effective linguistic communication rely on the underlying 
mechanisms of reading and speech comprehension. Figure 2.1 summarizes early 
theoretical contributions, including a number of general taxonomic grammars and 
computational efforts that are not discussed in further detail. 

The reader will notice that our understanding of graph comprehension did not 
progress via development of competing models and theories. Rather, research has 
unfolded as a progressive elaboration of a vast problem space, with works that 
shed light on disparate aspects or tasks, and others that expand on prior theory 
at different levels of detail, iterating rather than refuting. Half of the challenge is 
deciding what questions need to be answered, and here lies the power and difficulty 
of such interdisciplinary inquiry. 

2.2.1 A Semiology of Graphics: Bertin 

To utilize graphic representation is to relate the visual variables to the components of the 
information. With its eight independent variables, graphics offers an unlimited choice of 
constructions  for  any  given  information.  (. . . )  The  basic  problem  in  graphics  is  thus  to  
choose the most appropriate graphic for representing a given set of information. — Bertin 
[6, p. 100] 

Jacques Bertin (1918–2010) was a French cartographer, born in the suburbs of 
Paris and educated in the School of Cartography at the Sorbonne. An esteemed 
map-maker, he contributed to new methods of cartographic projection as the head 
of research at France’s National Center for Scientific Research (CNRS) [58]. Yet his 
most widespread legacy would be the first and most far-reaching effort to provide a 
theoretical foundation to the design of information graphics, first offered in the text 
Sémiologie Graphique [5]. 

Bertin’s volume resists concise summary,1 though its most oft-cited concepts in 
contemporary writing, are the visual variables and levels of organization, which 
taken together form a table of perceptual properties: a heuristic for information-
visual mapping (Fig. 2.2a). Bertin organized the tools at our (external) representa-
tional disposal in terms of space (two planar dimensions: location on a surface) 
and the visual (retinal) properties along with marks positioned within the space can 
vary: size, value, texture, color, orientation, and shape. In short, the visual variables

1 Any attempt to summarize the 400 page volume would be too brief, and this author is convinced 
that although widely cited, the depth of Bertin’s intellectual contributions is underestimated on 
account of opaque linguistic constructions. Bertin also contributed theory on levels of reading 
[p. 141], stages of processing[140], functions of graphics[p. 160], and information processing[p. 
166]. The motivated reader is strongly encouraged to give “Part 1. Semiology of the Graphic Sign-
System” a close reading [6]. 
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Fig. 2.1 Early influential theories, frameworks, and models in Graph Comprehension [32, 49, 59, 
60, 76]
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Fig. 2.2 Four contributions ranking perceptual accuracy of visual-spatial encodings. Bertin (a) 
was reasoned phenomenologically, Cleveland and McGill (b) derived from experimental studies 
with quantitative proportion judgments, which (c) Macklinlay [51] extended for nominal and 
ordinal data reasoning from existing psychophysics studies, not empirically validated in the context 
of graph comprehension
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offer eight channels into which information can be mapped. Bertin argued these 
channels have varying capacities for adequately representing different aspects of 
information: a correspondence between the nature of the information and perceptual 
requirements for discerning it in graphical form. In an orthogonal scheme, he posited 
four levels of organization that govern what about some information we might 
seek to perceive. Selective perception involves discerning categorical belonging; 
associated perception grouping like instances; and ordered perception discerning 
step-wise order and quantitative perception discerning the absolute value of an 
instance or numeric ratio between instances. Bertin asserted that to map data to a 
visual variable, the level of organization of the data must correspond to the capacity 
of the visual variable (Fig. 2.2a). Any mismatch is a source of “graphic error” [6, p.  
64]. 

Bertin envisioned a unifying framework that could govern the design of all kinds 
of graphics. A CNRS colleague reflected that it was the exposure to hundreds of 
representations from different scientific domains—brought to Bertin for advice— 
that endowed him with the sort of global perspective required to write a text 
as comprehensive as Sémiologie Graphique [7]. In modern parlance, we would 
say Bertin offered a structured design space for mapping information-to-graphical 
marks. Though it is important to note that these ordered mappings were inferred 
from a combination of logical reasoning and perceptual experience rather than 
experimental evidence. Bertin’s treatise is partially descriptive: structuring his 
observation of the components of graphical communication, and prescriptive: offer-
ing guidelines for how and when certain mappings should be made. In justification 
of the levels of organization assigned to each variable, Bertin offers a test, a sort 
of phenomenological self-check (or to the researcher, suggested experimental task) 
that should convince the reader. In this way, the classification of visual variables 
can be read as a set of hypotheses for controlled psychophysics experiments. The 
continued influence of Bertin’s work should remind us of the value of the kind 
a priori theorizing required to construct such a theoretical framework. He did not 
conduct experiments or build models to explain data, but rather imposed a coherent 
logical structure on a disorganized set of phenomena growing rapidly in importance. 
Though perceptual experiments would follow, Bertin’s visual variables still stand as 
the most common starting point for information-graphic mapping in visualization 
design. His work is widely cited in the pioneering research in computer graphics 
and information visualization, as well as the psychological studies of graphical 
perception that would begin in earnest in the 1980s. 

2.2.2 Elementary Structures in Graphical Perception: 
From Cleveland and McGill to Simkin and Hastie 

We do not pretend that the items on our list are completely distinct tasks; for example, 
judging angle and direction are clearly related. We do not pretend that our list is exhaustive;
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for example, color hue and texture (Bertin 1973) are two elementary tasks excluded from 
the list because they do not have an unambiguous single method of ordering from small to 
large and thus might be regarded as better for encoding categories rather than real variables. 
Nevertheless the list . . . is a reasonable first try and will lead to some useful results on graph  
construction. — Cleveland and McGill [16, p. 532] 

The Semiology of Graphics would not be published in English until 1983, 
and as graphic displays of information became prevalent in American statistical 
journals in the early 1970s, calls were made for more systematic inquiry. A “theory 
of graphical methods” was needed [21, p. 5] in order to overcome the state of 
“dogmatic and arbitrary” design guidance of the time [45, p. 29]. William Cleveland 
and Robert McGill were statisticians at Bell Labs when they answered this call, 
publishing a series of empirical studies in the Journal of the American Statistical 
Association (JASA) which they described as theory for the relative accuracy for 
a set of elementary perceptual tasks readers perform to extract the values of real 
variables from statistical graphs [16]. In subsequent years, Cleveland and McGill 
refined their terminology, replacing perceptual tasks [16] with graphical-perceptual 
tasks [17], basic graphical judgments [18], and finally, elementary codes [19], with 
influential publications spanning venues of statistics, HCI, and popular science. 
Claims made in their initial 1984 work were tested by additional experiments 
and deeper engagement with contemporaneous theories of vision, resulting in the 
much refined 1987 publication ranking accuracy of an expanded set of elementary 
codes (Fig. 2.2b).2 These codes describe channels available for mapping quantitative 
information to graphic form. In this sense, the authors re-articulated the visual 
variables described by Bertin [5, 6] and further ordered them according to human 
accuracy in making quantitative relational judgments. Cleveland and McGill’s 
variables do not match those of Bertin and, however, are admittedly neither 
exhaustive nor mutually exclusive [16, p. 532]. One explanation for this discrepancy 
is their having conceived of the codes on the basis of their personal experience with 
statistical graphs, while Bertin set out to theorize a structure that could account for 
the visual-spatial properties of all graphic marks on 2D surfaces. 

Cleveland and McGill’s approach was partially deductive—structured a poste-
riori from personal experience and perceptual theory (e.g., [74]) and inductive, 
generalizing from reviews of psychophysical experiments (e.g., [4]), and their own 
original studies. It is perhaps most accurate to characterize their studies as tests of 
Bertin’s hypotheses for the appropriate visual variables for quantitative perception. 
The experimental task asked participants—presented with two marked graphic 
components—to indicate “what percentage the smaller is of the larger” (p. 539), 
an operationalization of Bertin’s test for quantitative perception: “ask the reader the 
value of the larger sign if a value of one is attributed to the smaller sign” [6, p. 69].

2 Nonetheless, the more preliminary 1984 publication remains the most widely cited of their works, 
with nearly eight times as many citations as the 1987 elaboration [as reported by Google Scholar 
and Web of Science, January 2021]. This observation reinforces the importance of tracing the 
intellectual history of theoretical works to find their most mature form and should serve as a 
warning against cherry-picking references. 
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While Bertin reasoned that only the planar dimensions (spatial location) and size 
can adequately communicate quantitative information, Cleveland and McGill give 
us the relative accuracy of ten encodings for the same task. Their experimental data 
support Bertin’s hypothesis that spatial location (e.g., position along common scale, 
position along non-aligned scales) can carry this information most accurately. If 
length is imputed as the size variation of a line [6, p. 71] and area the size variation 
of a point, then the data support Bertin’s conclusions about the size variable, but not 
in relation to direction (Bertin’s orientation for line) or angle (potentially construed 
as shape). There is enough discrepancy suggested in the empirical results to warrant 
further scrutiny of Bertin’s criteria for judging a variable as applicable to a particular 
level and of the experimental tasks themselves. 

Four years later, Northwestern University psychologists David Simkin and Reid 
Hastie offered JASA a contextualization of Cleveland and McGill’s elementary 
codes, under a framework of information processing psychology [72]. Simkin and 
Hastie emphasized that performance of graphical perception depends not only on 
the way information is encoded but also on the judgment tasks performed by the 
human beings for whom the graphs are intended. Building upon Follettie [26], they 
differentiated between measurement, discrimination, proportion, and comparison 
judgments (Fig. 2.3a). It is important to note that all of Cleveland and McGill’s 
studies used proportion judgments. Follettie, and later Simkin and Hastie, brought 
awareness to a whole new range of judgment tasks for which statistical graphs 
are used. Most importantly, they demonstrated that choosing a graphic mapping 
for a variable of data should not only depend on the data type (Bertin’s level of 
organization) but also on the judgment task the designer wants the reader to perform. 
They offered empirical demonstrations of the interaction between elementary codes 
and judgment tasks (e.g., comparison judgments were most accurate with simple 
bar charts (position along common scale) while proportional judgments were most 

Fig. 2.3 Schematic diagram of Simkin and Hastie’s theorized Elementary Mental Processes, 
adapted from (1987)
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accurate with simple pie charts (angles)). Moving beyond encoding, they theorized 
four elementary mental processes that could—in an algorithmic sense—explain 
relative error and response rates across tasks (Fig. 2.3b). The elementary mental 
processes can be construed as visual data extraction steps: ordered in procedures 
that are executed by the perceptual system in order to accomplish a judgment task. 

Over the course of the 1980s, the use of statistical graphics in publishing and 
data analysis surged with the development of software packages that made simple 
visualizations accessible for personal computer users. The cross-fertilization of 
empirical research between perceptual psychology and statistics demonstrated how 
demand for design recommendations can drive applied research questions that in 
turn inspire basic science research. Though the decade began with a focus on 
mapping information to visual forms, it would end with sophisticated hypotheses 
about how such mappings would interact with tasks, governed by perceptual rules, 
to elicit comprehension. 

2.2.3 The Rise of Process Theories 

Prior to 1980, there had been very little systematic research on the psychology of 
graph comprehension [84]. Over the course of the 1980s, methods and theories from 
cognitive psychology began to permeate the community in statistics concerned with 
graphical perception. Simkin and Hastie, notably, were psychologists, though they 
published their seminal work in the Journal of the American Statistical Association 
(JASA) rather than a journal of applied cognition or perception. Their contribution 
stood in direct conversation with the earlier work of Cleveland and McGill in the 
same venue. In [43], psychologist Stephen Kosslyn published in JASA a review of 
five books on charts and graphs, including Bertin [6], Tufte [77], and Chambers [13]. 
Rather than a straightforward critique however, Kosslyn offered a thorough primer 
on relevant concepts from cognitive psychology contextualized with respect to graph 
reading. He provided a sketch of contemporary visual information processing [52] 
and the distinction between short- and long-term memory [3, 47] before addressing 
the extent to which the practical guidance offered by each book comported 
with aspects of cognitive theory. Although its citation count pales in comparison 
to the aforementioned works, the importance of Kosslyn’s contribution cannot 
be overstated. In this cross-disciplinary fertilization, he offered—like Bertin— 
a structure for thinking about the scope of what questions might be asked of 
graphical performance. He shared a simple (conceptual, process) model of visual 
information processing (Fig. 2.4) in which graph perception would be situated. To an 
application-focused community of statisticians using graphics, he brought a concise 
summary of relevant psychological constructs. While previous efforts focused on 
structural questions of encodings and tasks, Kosslyn drew attention to the way that 
graph reading unfolds as a process.
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Fig. 2.4 A process description of visual information processing, adapted from [44]. The same 
figure appeared (without linguistic annotation of the important characteristics) in [43] 

But Kosslyn’s influence would not end there. In [44] he published an analytic 
scheme for deconstructing graphs3 into constituent parts, which could then be 
analyzed at the levels of: syntactics (configuration of marks), semantics (the 
meaning that arises from configurations), and pragmatics (conveyance beyond direct 
interpretation of symbols). This contribution was more structural than procedural, 
offering a schema for evaluating graphs with respect to acceptability principles 
reasoned from cognitive theory. But in doing so, he would make reference to a 
forthcoming publication from his former graduate student Steven Pinker, one that 
would go on to stand as the most widely cited theory of graph comprehension. 

2.2.3.1 A Theory of Graph Comprehension: Steven Pinker 

While experimental psychologist Steven Pinker is most widely recognized for his 
popular science books on language and human nature, he got his start in the late 
1970s as a doctoral student studying visual cognition with Stephen Kosslyn at 
Harvard. His chapter “A Theory of Graph Comprehension” in the book Artificial 
Intelligence and the Future of Testing would influence research on the design 
and function of visual-spatial displays across psychology, education, and computer 
science for decades [62]. In fact, the ideas were influential before publication, with 
earlier versions of the theory cited via MIT technical reports from the early 1980s. 

Pinker’s theory consists of a series of computational processes that propagate 
representations of information across components of a theorized human cognitive 
architecture (Fig. 2.5). He proposes that graph interpretation begins with construc-
tion of a visual array: a relatively raw, minimally processed representation of the

3 Kosslyn makes a distinction between charts (specifying discrete relations between discrete 
entities) and graphs (a more constrained form, requiring at least two scales associated via a “paired 
with” relation). 
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Fig. 2.5 Three versions of Information Processing accounts of Graph Comprehension. Italic 
annotations in blue indicate clarifications, and red indicates changes from prior models. In reading 
these diagrams, it is important to recognize they represent processes, not components. The boxes 
in Pinker, for example, indicate representations of information, not theorized cognitive structures, 
like working memory or executive control. The diagrams are not schematics for the structure of a 
cognitive system, but schematics of how information is processed, and care must be taken to avoid 
inadvertently reifying them into component structures, which might serve an implementation level 
of analysis
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information made available to the nervous system via patterns of intensity on the 
retinas. The visual array is then encoded into a visual description: a symbolic, 
structural representation of the scene in a form more efficient for computation with 
knowledge in memory. A MATCH process then compares the visual description 
with the contents of memory in order to select the correct graph schema—a sort of 
placeholder indicating the structural relation of information for that particular class 
of graph. Once instantiated, information from the visual description is structured 
according to the relations of the selected schema. By this point, the external 
representation of the graph has been transformed into an internal representation 
in some structured, symbolic form that can be interrogated (searched) in order 
to extract information. Pinker uses the term conceptual question to refer to the 
information the reader wishes to derive from the graph and conceptual message 
the information that is actually extracted. A message assembly process searches 
the instantiated graph schema for information to translate to the form of the 
conceptual message. But processing capacity limitations prevent all the information 
from being automatically translated to messages. Rather, the interrogation process 
searches the graph schema for information matching the conceptual question. If it 
is found, message assembly takes over. But if not, interrogation can traverse the 
prior stages of representation (the visual description, then visual array) until the 
desired information is found, a top-down search that may require re-encoding the 
visual array. Finally, Pinker appeals to a general class of (logical, mathematical, and 
qualitative) inferential processes that operate on the conceptual message in service 
of answering the conceptual question. 

Pinker’s approach was deeply situated in the tradition of information processing, 
expressing an orientation toward a computational theory of mind. His explana-
tion functions at Marr’s algorithmic level of analysis—specifying representations 
and procedures for transforming them [52]. He offers an exceptionally detailed 
account of the properties of the representations he proposes (especially the visual 
description) and how they comport with cognitive theory in vision, memory, and 
attention. The 1990 publication is not an easy read, and it is my personal opinion 
that its scope is often misunderstood and contribution inadvertently reified as its 
diagrammatic representation of information processing.4 Figure 2.5a is adapted 
from Pinker’s Figures 4.14 and 4.19 which he characterizes as “representing the flow 
of information specified by the current theory” [62, p. 104]. The diagram depicts 
the order of representations and names of processes that transform them but fails to 
adequately describe re-encoding of the visual array (by re-attending to the graph) 
or the timecourse of decay of any representation based on the capacity limits of 
short (i.e., working) memory (e.g., [62, p. 89]). This leads to the misconception 
that Pinker does not address the role of working memory or proposes that an entire

4 Just as we are drawn to graphs of empirical results, we are drawn to diagrams of theoretical 
offerings. The readers are warned against assuming that a diagram entirely represents a theoretical 
account, and writers encouraged to explicitly describe the representational role of diagrams in the 
scope of their theory. 



52 A. R. Fox

graph is encoded in a single linear process. Rather, it is more appropriate to construe 
the diagrammatic representation as a snapshot of the flow of information through 
a single iteration of a bottom-up (perceptually driven) loop. We are similarly left 
wondering “where” in the mind his representations exist. This is not explicitly 
defined in the process diagram nor the text, but it can be reasonably inferred that 
all posited internal representations exist in short term (i.e., working) memory, as 
this is where processing would occur in the context of the cognitive theories he 
references (with the exception of the uninstantiated graph schema, likely in long-
term memory). 

Most importantly, justification for the theory rests on a single proposition: that 
graph comprehension exploits general purpose cognitive and perceptual mecha-
nisms. Pinker’s chapter was not the culmination of decades of empirical experimen-
tation with graphs, but rather, the application of contemporaneous theories of vision, 
memory, and attention to the phenomenon of graph comprehension. This statement 
is not offered in critique, but in observation of the variety of ways that theory is 
developed. In this case, refutation rests on change to theories of vision, attention, 
and memory or evidence that graph comprehension is sufficiently different from the 
phenomena used to construct those theories to warrant special purpose cognitive 
mechanisms. 

2.2.3.2 A Construction-Integration Model: Shah and Colleagues 

An alternative to refuting a theory is refining it, by elaboration (specifying detail) or 
contextualization (situating in larger scope). In the late 1990s and early 2000s, Priti 
Shah and colleagues arguably did both: zooming out to describe the iterations of 
information processing when comprehending a graph and zooming in to elaborate 
the influence of “top-down” factors. 

While prior experimental work focused on the perceptual aspects of graph 
comprehension, Cognitive Psychologist Priti Shah’s mid-1990s dissertation work 
emphasized the role of cognitive processes in graph comprehension. Though con-
temporary Cognitive Science resists a precise delineation between perception and 
cognition, in graph comprehension a distinction is typically drawn between sources 
of information. Perception—information arriving via the senses—is referred to 
as “bottom-up” processing, while prior knowledge and computation over internal 
representations is referred to as “top-down” processing. Like Pinker, Shah, and her 
colleagues reasoned that graph comprehension would make use of general purpose 
cognitive processes rather than some special graphics engine in the mind. Drawing 
inspiration from Walter Kintsch’s well-regarded Construction-Integration Theory 
[41], Shah elaborated how the processes of constructing meaning with a graph 
might proceed in the same fashion as constructing meaning from text or linguistic 
discourse. 

Along with Patricia Carpenter, Shah first drew attention to the timecourse of 
information processing when reading a graph [12, 67]. Prior perceptual accounts 
tended to emphasize holistic pattern recognition processes that allow the readers
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to make the sort of quick proportional judgments used in studies of graphical 
perception. Carpenter and Shah employed more complex tasks, asking the readers 
to describe graphs and answer comprehension questions. Performance on these 
tasks, accompanied by measurements of eye fixations, revealed a more iterative 
procedure was taking place: one that involved a serial identification of visual 
chunks, followed by inferences and reasoning, repeated until the task goal had been 
accomplished. Along with evidence of differential task performance based on prior 
knowledge of semantic content, their studies provided support for the claims that 
(1) successful graph interpretation depends not only on appropriate information-to-
graphical encoding but also on prior knowledge and skill of the graph interpreter and 
(2) graph comprehension is an iterative, multi-stage process. Publications in 2002 
drew more strongly from CI Theory, characterizing the timecourse of processing 
in terms of two phases: an initial construction phase, where visual chunks activate 
relevant prior knowledge and are integrated into a coherent representation, and an 
integration phase, where inferences are made over the (coherent) representation 
(Fig. 2.6a) [30, 68]. The phases follow in order, though can be repeated, and 
integration can be followed by further construction, as necessary (Fig. 2.6b). 

The astute reader will ask how Shah’s Construction-Integration Model relates 
to Pinker’s [62] Theory of Graph Comprehension. The answer depends on one’s 
interpretation of each text. In a 2005 review, Shah and colleagues describe their 
model as differing from Pinker’s in that it specifies that prior knowledge (and in turn, 
expectations) is activated by the encoding of visual chunks, which serve as a top-
down constraint on inferential processing [69]. Pinker also describes the activation 
of prior knowledge, though in slightly different terms. Specifically, the MATCH 
process “searches” prior knowledge in order to instantiate an appropriate schema 
(prior knowledge structure) for the type of graph being perceived [62, p. 101]. In 
this way, the prior knowledge of graph type is activated by the (symbolic) visual 
description of the graph (the encoded visual chunk). Since inferential processes 
act on the instantiated graph schema, this prior knowledge serves to constrain 
interpretation. What Pinker does not explicitly describe is the activation of prior 
domain knowledge, or any understanding the reader has about the information being 
represented by the graph, though a generous interpretation would be that he includes 
this constraining influence under the scope of inferential processes (p. 103), a 
catch-all term to describe all of the higher order processing (logical, mathematical, 
judgments, and decisions) that one performs on the instantiated graph schema. If 
Shah’s coherent representation is equated with Pinker’s instantiated graph schema, 
then the two accounts are congruous. They are consistent in appealing to general 
purpose mechanisms, to describing a serial process of encoding, some form of 
integration with prior knowledge, and inferential processing. They both posit the 
existence of internal representations: Pinker gives a specific account of a plausible 
form of these representations, Shah requires only that they exist, leaving the CI 
model with less explanatory power for mechanisms, but greater robustness to change 
in the perennial debate on the nature of internal representation. It is this author’s 
reading that these two accounts of graph comprehension are highly compatible, 
serving to elaborate different aspects of graphical processing at different levels of
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Fig. 2.6 A Construction-Integration Model of Graph Comprehension, derived from the text 
description in [30, 68]. (a) describes two distinct phases of comprehension: the first involves 
encoding visual chunks, while the second involves higher order cognitive processing over the 
working internal representation. (b) describes how integration follows some number of iterations 
of construction, before processing is either complete and ready for integration 

specificity. While Pinker attends to a computationally plausible encoding structure 
for graphical information, Shah attends to the more global timecourse of processing 
and iterations of “perceptual” and “cognitive” efforts. They both offer testable 
predictions about how factors of the graphical display and the graph reader should 
differentially influence task performance.
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2.3 The Landscape of Contemporary Research 

Statistical graphics have never been more prevalent than they are today in scientific 
inquiry, business operations, or popular media. With such a wealth of applications, 
it is a good time to be a Visualization Psychologist but is not easy to study the 
psychology of visualization because as an applied area of inquiry, both students 
and scholars alike must navigate an opaque disciplinary milieu. The readers can 
find relevant empirical research in venues as distinct as journals and conferences 
of science or math education, learning science, information and library science, 
cognitive, educational, perceptual or (general) experimental psychology, vision 
science, cognitive science, and of course computer science—where the conference 
triad InfoVIS, SciVIS, and VAST claim some epistemic authority of the subject 
matter by virtue of naming rights. 

In the two decades since Shah’s Construction-Integration model, we have not 
seen similar overarching, general process accounts of comprehension. Rather, the 
researchers across these fields have progressively elaborated a complex ecosystem 
of factors that influence performance on graph comprehension tasks. We can orga-
nize these factors into three groups: those pertaining to the display, the individual, 
and the situation. 

Display Factors The research on display characteristics tends to center on deter-
mining the most ideal encoding of information, a question of design. Bertin offered 
the first experientially deduced guidelines for mapping data to graphic marks [5, 6],5 

some of which were experimentally tested using relational judgment tasks and 
ranked by Cleveland and McGill [16, 19] and further extended by Mackinlay [51] 
who ranked encodings according to theorized perceptual accuracy for communicat-
ing quantitative, versus ordered, verses categorical data (see Fig. 2.2c). If humans 
were perceptual computers, this might be the crux of visualization psychology. But 
we are, of course, more delightfully nuanced creatures. Contemporary research has 
demonstrated that effectiveness of encodings depends not only on the capacity of 
a particular type of mark to carry a certain type of information but also on what 
about that information the designer wants the reader to perceive most effortlessly. 
Ensemble encoding, for example, relies on characteristic performance of the visual 
system to inform encoding choice when the goal is to facilitate, for example, 
identification of an outlier, versus recognition of a statistical mean, or apprehension 
of clusters within the data [75]. Design choices within a particular encoding strategy 
are nuanced as well, as evidenced by research on the use of color. Color hue has been 
shown to be particularly effective for encoding data for nominal or absolute value 
judgments, while color brightness is superior to hue when encoding the same data 
for relative judgments [10, 55]. The plot thickens—design choices become more 
complex—when visualizing more than one variable and the interactions between

5 The oft-overlooked footnote to these heuristics is that the rankings are meant to apply when the 
reader’s task is an “elementary reading” (extracting a specific value). 
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encoding strategies need be considered. Smart and Szafir recently demonstrated 
that the shape of a graphic mark significantly influences perception of color and 
size [73]; whatever the designer’s most informed intentions, their efforts can be 
thwarted by interactions between decisions they make. Similarly, visual saliency 
(how “attractive” an area is to the eye) has been shown to influence how humans 
attend to visual stimuli [38]; though recent efforts to computationally reconcile 
bottom-up saliency models top-down “cognitive” models have proven ineffective 
at predicting gaze behavior [48]. While display characteristics were the focus of 
the earliest research in graph comprehension, they receive no less attention in 
modern research efforts. Designers need practical guidance on when and how to 
use animation [8, 79] and 3D [68], how to use signals or instructions to augment 
a display and scaffold comprehension [1, 28, 42, 54], and how to use interaction 
most effectively [61, 66]. Since the time of Cleveland and McGill, research on 
display characteristics has become increasingly nuanced, revealing more factors that 
influence how a display should be designed and the interactions between them. 

Individual Factors Research on individual differences, or factors that give rise 
to differential performance with the same graphic display, is most common in 
cognitive and educational psychology and learning science. As Carpenter and Shah 
argued, “individual differences in graphic knowledge should play as large a role 
in the comprehension process as does variation in the properties of the graph 
itself” [12, p. 97]. But what is meant by graphic knowledge? In empirical work, 
graph knowledge is tightly entwined with graph reading abilities and expertise. 
The terms graphicacy, graphical literacy, graph sense, graphical competence, and 
representational competence are used throughout the literature in psychology and 
education to refer to a reader’s ability to understand (and potentially create) infor-
mation displayed graphically. If graph comprehension is the act of deriving meaning 
from a graph, then graphicacy is its educational flip side: the ability to perform a 
graph comprehension task. Some have treated this ability as a foundational step in 
cognitive development, akin to numeracy and literacy [31]. Others treat the ability 
as a practice, implicating the importance of experience and socio-cultural influences 
[64, 65]. In education in particular, the researchers have pursued general learner 
characteristics that might serve as pre-requisites or predictors of these graphing 
abilities, including mathematical ability [23], working memory [12], and spatial 
reasoning [81]. Ulrich Ludewig’s recent doctoral dissertation offers a thorough 
reconciliation between perspectives of graph comprehension and graphicacy [50]. 
It is slightly easier to differentiate between ability and knowledge with respect to 
specific graphs, for example, domain knowledge of the information represented 
in a particular graph, and knowledge of that particular representation’s graphical 
formalisms. The act of graph reading requires that we use our knowledge of a 
graph’s formalisms to perform some task (e.g., extract a value, detect a trend), 
thereby “learning” something about the domain. In my own research, I have 
demonstrated that this procedure is not reciprocal. It is much more difficult to use 
prior knowledge of a domain to “reverse engineer” understanding of a graphical 
formalism, such as may be required to understand an unfamiliar or unconventional
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type of graph [28, 29]. A reader’s understanding of the concepts represented in a 
graph has been shown to guide not only the reader’s interpretation of the display [63] 
but early perceptual processing as well [68]. In some cases, a reader’s expectations 
seem to “inoculate” them from true relations presented in the data or lead them to 
over or underestimate the magnitude of relations. Conversely, domain knowledge 
has been shown to support comprehension by making the readers more likely to 
ignore “noise” in data [86]. More recently, Jessica Hullman and colleagues have 
explored the role of prior beliefs [37, 40] and even judgments of expectations of 
others [36] on graph interpretation. Taken together, the research on characteristics 
of individuals has provided strong evidence for “top-down” influences on graph 
comprehension. 

Situational Factors Factors that change comprehension performance of an individ-
ual with a particular display depending on the situation are the least structured, thus 
least understood pieces of this factorial puzzle. Affect (emotion) and motivation 
clearly influence human performance of any task, and although these are charac-
teristics of an individual, we classify them as situational because they are more 
situationally variable—in the context of a repeated measures study, for example— 
than the relatively stable6 factors like prior knowledge or ability. Task is the most 
studied situational factor, though it is at present a hierarchical concept poorly 
operationalized across the literature. The term “task demand” is used to indicate 
a variety of contextual factors, from a relatively low-level step of information 
extraction (i.e., a micro-step in a larger process, such as identifying a location of 
interest in a graph), to a specific task or goal provided to a reader in an experiment 
(e.g., extract a value, compare two points, characterize a trend), to the context 
of some cognitive activity (e.g., analyzing data, making a decision, forecasting, 
solving a problem), and to the communicative intent of the designer (e.g., to inform, 
educate, entertain, persuade, etc.). In the beginning, there was but a single task: 
Cleveland and McGill’s proportional judgments [16, 19]. Folettie, followed by 
Simkin and Hastie, elaborated further judgments (measurement, discrimination, and 
(non-proportional) comparison) [26, 72]. Bertin also addressed tasks, proposing 
three “levels of reading” [6, p. 141]. Other tripartite classifications have been 
proposed in the same vein, all structuring how much of the depicted information 
the reader need attend to, and how explicit or precise their response should be 
[5, 6, 23, 31, 83]. In their application of ensemble encoding theories to visualization, 
Szafir and colleagues offer a parallel taxonomy of four tasks-types that require 
visual aggregation [75]. These can be partially but not entirely mapped onto the 
extant tripartite structures. The most complete deconstruction of the concept of 
task can be found in Brehmer and Munzner’s, “Multi-Level Typology of Abstract 
Visualization Tasks,” which surveyed an impressive volume of prior task frame-
works in computer graphics and visualization, visual analytics, human–computer 
interaction, cartography, and information retrieval [9]. A fruitful undertaking for

6 Variability, of course, depends on the scope of time under consideration. 
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visualization psychology would be to extend this typology to include the tripartite 
classifications that grew out of education, the lower level tasks elaborated in vision 
science, and higher level “communicative context” that is evident in the structure 
of the field of visualization itself [27]. A strong underlying assumption of much 
research in graph comprehension (and visualization writ-large) is that the graph 
designer’s goal is to clearly communicate, “the truth” of some data to the reader. 
Thus, the graph should be maximally informative and minimally difficult—the 
graphical equivalent of Grice’s maxims for communication. But research in learning 
science has taught us that sometimes difficulty is desirable. Perhaps if my graph is 
for learning, I might encode data differently so as to scaffold a reader’s process of 
discovery and more deeply engage with the data. Alternatively, if the context of my 
communication is persuasion, I might use more signals to direct reader’s attention 
than I would if the context were exploratory analysis. The role of communicative 
context is seen structurally through the emergence of specialized workshops at the 
IEEE VIS conference but has not yet been systematically investigated across a full 
range of communicative tasks. My own theoretical intuition—reasoned from design 
experience and engagement with the literature—is that situational factors are those 
that present mediating or moderating influences on other individual and display 
characteristics, at either the time of design or comprehension. 

A primary challenge facing designers and researchers alike is the sheer number 
of factors found to influence comprehension and the fact that they are typically 
studied in limited clusters, inconsistently operationalized between studies and 
across disciplines. This makes it difficult to conceive of the complex interactions 
that may exist between factors and how to go about constructing nuanced guidelines 
for designers. The most comprehensive summaries of factors can be found in 
[31, 33, 70] and [35], which features a concise set of empirically grounded principles 
for display design that would make a useful addition to the wall of any graph 
designer. 

2.4 What Remains to Be Discovered 

The good news is that “the state of our (sub) discipline is strong.” The bad news is 
that it is difficult to navigate and even more difficult to integrate. In the two decades 
since the last publication of a general process theory of graph comprehension [68], 
the march of empirical research has only quickened, offering insight into factors 
that affect graph comprehension, but in forms too piecemeal to be fruitfully and 
consistently applied. There are myriad open questions to be answered, from how 
exactly factors interact to influence performance to how performance is expressed 
in different forms of cognitive activity: decision-making vs. problem solving, 
forecasting, learning, or creative construction. We need to explore our boundaries: 
how does interaction with the narrowly defined class of “graphs” compared to the 
broader class of diagrams or external representations, in general? (see [14, 15] for  
thorough treatments). And our field too must address the challenge of traversing
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“lower levels” of explanatory analysis: there is a tremendous gulf of explanation 
between conceptual models of graph comprehension and understanding of how 
these processes are enacted in the body. 

Hegarty [71] and more recently Padilla [56] have convincingly argued for the 
importance of cognitive models in guiding visualization research. Hegarty suggests 
they are useful for predicting the effectiveness of designs and informing design 
decisions. Padilla argues that cognitive models can be used to promote innovation 
and evaluate validity of empirical research designs. In sum, they can bridge an 
important gap and presuming they are communicated in an appropriate venue, well-
articulated models can help ensure that the “state of the art” in basic research is 
available to guide applied efforts in design and instruction. But what kinds of models 
do we need, and what makes a model cognitive? 

Those seeking easy answers to these questions will fall quickly down a philo-
sophical rabbit hole. Models in science come in all shapes and sizes, with differing 
levels of analysis and varieties of explanation. In the social and behavioral sciences 
alone, one finds component and structural models, conceptual models, computa-
tional models, and task-analytic and mathematical models. Models differ in what 
aspect of a phenomenon they explain (e.g., structures, relationships, processes), 
how they are justified (e.g., by phenomenological, experimental or task-analytic 
empirical evidence, by logic or appeal to reason), and the way they are represented 
(conceptually: typically via words and diagrams or computationally: via math and/or 
computer programs). The importance of clearly conceptualizing and subsequently 
articulating the scope and purpose and form of a model cannot be overestimated, as 
the failure to do so can have tragic consequences for the intellectual trajectory of a 
field. 

Take, for example, [62] Theory of Graph Comprehension. Setting aside for the 
moment that it is characterized as a theory and not a model,7 a quick inspection of 
its diagrammatic representation (Fig. 2.5a) will reveal no mention of memory. Does 
this mean that Pinker believed memory was not involved in graph comprehension? 
No, it means that the reader needs clarification on what aspect of the phenomenon 
Pinker’s model explains: a propagation of representations and the processes that 
transform them. Close reading of the accompanying text reveals what was likely 
obvious to readers at the time: all of the representations and processing take place in 
some form of memory. Pinker might have chosen to represent this in the diagrams 
by locating the representations (boxes) inside other graphics representing memory 
structures. This would have been advantageous for subsequent theorists looking to 
position their own ideas in relation to his but would also have changed the type of 
model, from the flow information processing to the flow of information processing 
and component structures—taking on an additional Marrian level of analysis [52]. 
In applying Pinker’s model to a specific cognitive activity (decision-making), 
Padilla and colleagues have done well to clearly articulate the role of memory,

7 Theories are typically treated as superordinate to models, though their exact relation is a topic of 
debate in philosophy of science. 
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as well their interpretation of the construct of memory itself [57], implicating 
a multiple component conception where “a multicomponent system (. . . )  holds  
information temporarily and mediates its use in ongoing mental activities” [20, 
p. 1160]. While these details may be superfluous for those keen to apply the model, 
they are absolutely essential for the ongoing intellectual dialogue expressed via 
works of scholarship that move our science forward. Imagine next year a ground-
breaking study is published in a journal of experimental psychology that questions 
the multicomponent conception of working memory, supporting a rival account 
with implications for how visual attention is directed. Changes to the underlying 
constructs on which a model or theory rests should necessitate its re-evaluation, no 
different from the need for testing and upgrading software when the libraries on 
which they are built mature. 

The obvious difficulty is that constructs are transient, under-specified, and cer-
tainly not versioned like packages of code. Too often the precise conceptualization 
of constructs is held as tacit knowledge instantiated in encapsulated research labs, 
propagated through limited networks via the exchange of students and postdoctoral 
scholars.8 Too little space is allocated in our written scholarship to descriptions 
of what we specifically mean by the terms we use, a symptom of a drive toward 
innovation and novelty over depth of explanation. I propose that in theoretical 
scholarship we should strive to be a little more like academic philosophy, where 
precision and justification in language is not only valued but demanded. We should 
be novel in our applications, but religiously rigorous in our theory. Models and 
theories should exist in direct dialogue with those that come before, explaining 
exactly how and why they differ and offer sufficiently impactful differences to be 
worthy of inclusion in the scientific canon. 

In this onerous challenge stands a role for visualization psychology: as a mediator 
between disciplines (computer science, psychology, and education) and between 
professions (basic and applied research, design, and instruction). As a community, 
visualization psychology can position itself at the intersection of these goal-driven 
efforts and moderate the construction of reference models, intended to integrate 
theory across disciplines and levels of analysis that is specifically related to our 
phenomena of interest. We need not be concerned with explaining precisely how 
memory or attention are instantiated by the body but should take responsibility for 
maintaining enough awareness of the progression of those basic theories, so we can 
apply and as needed update our own models of how such cognitive phenomena drive 
the performance of graph (and visualization) comprehension.

8 see Kaiser [39] for a fascinating intellectual history of this phenomenon with respect to dialects 
of Feynman diagrams. 
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Chapter 3 
Mental Models and Visualization 

Florian Windhager and Eva Mayr 

Abstract Mental models are internal representations of external phenomena. Dur-
ing their interaction with visualizations, the users construct mental models to 
represent these visualizations internally, to visually reason on them and solve 
problems with them. This chapter synthesizes existing theories on mental models 
and visualization to discuss their role and relevance for the design of visualiza-
tion systems. From a mental models perspective, we discuss two challenges of 
visualization design: (a) supporting the initial construction of mental models and 
(b) supporting the integration of information from multiple views by synchronous 
or sequential coherence techniques. We argue that the theory of mental models 
allows to understand visualization research and practice in a more unified fashion 
as an advanced model-building endeavor, operating on human computer ensembles 
engaged in “distributed cognition.” 

3.1 Introduction 

Visualizations aim to amplify and augment human cognition and action in face of the 
challenges posed by complex data and information [7, 32, 43]. Accordingly, visual-
ization research investigates the cognitive effects of interaction with visualizations 
to prove the value of novel techniques. Theoretical reflections of this practice build 
on different conceptualizations of cognitive entities and processes—from insights 
theory [34] to sensemaking approaches [38]—and more elaborate cognitive science 
perspectives [18, 26, 36]. Yet, looking at the state of research, visualization experts 
work with rather sketchy conceptions of the cognitive apparatus and its operational 
entities and did not extensively explore the question how users build up internal 
representations of data, reason with them, and assemble local insights into bigger 
internal pictures. This chapter aims to contribute to a better understanding of internal 
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representations in visualizations by synthesizing relevant theories and models and 
by discussing their relevance for the design of visualizations. 

To take first steps in this direction, we turn to the theory of mental models from 
a distributed cognition perspective [26] (Sect. 3.2). A mental model is an analog 
“small scale” internal representation of an external phenomenon [11]. During their 
interaction with visualizations—which arguably are models of (data about) external 
phenomena themselves [12, 30]—the users construct, adapt, and manipulate their 
own mental models of the external visualizations. They then use the external and 
the internal representation in a distributed fashion to reason with them, to take 
different perspectives on them, to organize and integrate detailed information, and 
to derive insights and infer hypotheses for the interpretation of the original, external 
phenomena. 

Aside from providing an elegant cognitive-theoretical foundation for this kind 
of practice, we will argue that a mental model perspective also has implications 
for the future design of more complex visualization systems. One reason for this 
might be the knowledge about the mental efforts and costs of model building: the 
human working memory can only “maintain a limited amount of information (their 
capacity) for a finite period” [36] and aims to keep the required working memory 
resources, the cognitive load, to a necessary minimum. Even as visualizations allow 
to “offload” certain cognitive operations from the working memory to the external 
representation, their understanding requires their internal cognitive reconstruction 
and connection to existing knowledge—at least to a certain degree. Yet, construction 
efforts are known to be highly demanding in terms of working memory capacity and 
cognitive load and visualization design is well advised to support such construction 
processes. 

Thus, we discuss related challenges for the design of visualization systems which 
can support the construction and elaboration of mental models in face of rising topic 
and data complexity (Sect. 3.3). This chapter aims to establish and consolidate a 
mental model perspective in visualization, to outline related design challenges, and 
to initiate a more systematic discussion and implementation of such techniques and 
studies. 

3.2 Internal Representations 

Visualization research develops external representations of data to support the 
internal efforts of human cognition, including decisions about behavioral responses 
and actions. Visualization systems thus are designed to serve as “amplifiers,” 
“mediators,” or “prostheses” for human cognition and action in face of challenging 
(e.g., abstract, multidimensional, or massive) constellations of data [2]. Given this 
widely accepted functional stance, visualization designers can benefit from existing 
knowledge about internal representations [27]: how users construct them when they 
interact with visualizations, how they manipulate them to reason on them, and how 
they offload cognition to the external representations. In the following, we will build
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Fig. 3.1 Schematic line up of an extended cognitive system, showing the translation from complex 
data and subject matters (left) to an external representation (blue), which is (re)constructed as an 
internal representation by a user in working memory and stored in long-term memory (right) 

on the theories of distributed cognition (Sect. 3.2.1) and mental models (Sect. 3.2.2) 
to discuss future challenges for both—visualization and theory development. 

3.2.1 Distributed Cognition 

According to the theories of situated and distributed cognition [26], human cogni-
tion cannot be understood without its ubiquitous amplification and augmentation by 
cultural artifacts (like tools, data carriers, calendars, or computers) and its constant 
social and cultural interaction and resonance with other processing units [21]. 

Interactive visualizations—as an advanced species of cultural artifacts—thus 
allow cognitive systems to expand into human–computer ensembles mediated by 
visual displays: in such an extended cognitive system (see Fig. 3.1), humans visually 
analyze complex objects of study by means of visual displays (as external represen-
tation on the computer) and continuously build up and manipulate corresponding 
mental models (as internal representations in their working memory). 

On these (internally–externally) coupled representations, reasoning operations 
can take place as visual and cognitive manipulations. As the human working 
memory is limited in terms of storage and processing capacity, an extension with 
the external representation allows to process more complex information with less 
cognitive load. Results then can be stored as individual instances or generalized 
structures in long-termmemory. Across the distributed architecture of such extended 
cognitive systems, basic transaction processes between internal representations on 
the user side and external representations on the visualization side play out in 
different combinations [27, p.1002]: 

• If there is no prior knowledge or existing internal representation, internalization 
equals the construction of a new mental model based on a given external 
representation (i.e., learning). These processes require a bottom-up synthesis of 
visual patterns into various forms of internal representations—and a high amount 
of mental effort.
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• As acquired (and generalized) structures, already existing internal representa-
tions (e.g., schemata, scripts) guide the processing and interpretation of external 
representations [38]. 

• Existing internal representations can not only be activated and simulated in 
working memory for visual reasoning operations but can also be augmented 
by external representations to work in joint as coupled and distributed repre-
sentations, which equals the standard constellation of an visualization-mediated 
human–computer ensemble. 

For visualization systems, numerous effects have been described how they support 
human working memory and cognitive processes [7, 26, 27, 37, 43] and have been 
grouped into four functions [17]. (1) External storage of detailed information on 
visual displays unburdens the working memory (from imagination, integration, 
and memorization) and allows the corresponding internal representation to remain 
lean and lightweight. (2) The visual-spatial arrangement of information unburdens 
cognition from decoding abstract, alpha-numerical symbols, and sequences of 
language-like representations. It enables a more natural interpretation (e.g., of data 
items’ relations via “display proximity” [56]) and facilitates visual search and 
information integration. (3) Complex analytical operations can be offloaded to the 
swift workings of visual pattern recognition and pre-attentive processing [16]. (4) 
Strenuous symbol-based reasoning operations with abstract data can be offloaded to 
interactions with visual-spatial models of the data. The users then can explore these 
visual models perceptually and read off conclusions “without presupposing mental 
logics and formal rules” [27, p. 1000]. 

3.2.2 Mental Models 

Cognitive science has developed a variety of concepts to describe and understand 
internal representations of external data.1 One specifically interesting approach 
comes with the theory of mental models: observations and explorations—in physical 
[54], as well as in abstract and artificial environments [22]—instruct “the creation 
and interpretation of an internal mental model” [50, p.921]. 

While humans explore physical surroundings or information spaces—from caves 
to cities and from libraries to complex datasets—they continuously build up 
mental models as analog representations of observed objects, systems, or their 
environments and use these mental models to reason on them. In this regard, mental 
models are similar to the concept of cognitive “frames” [24], which also integrate, 
connect, and organize data from external observations (see Fig. 3.2, left-hand side). 
The practical relevance of both, frames and mental models, is their flexibility and

1 Prominent concepts include cognitive schemata, cognitive scripts, cognitive images, cognitive 
maps, prototypes, or cognitive frames [23, 27]. 
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Fig. 3.2 Like cognitive frames, mental models connect and organize data in an interactive 
loop (left, adapted from [24]). Visualizations provide external templates (center, blue) for the 
construction and augmentation of internal mental models (green). Visual reasoning thus equals 
the hybrid interplay of such coupled, but distributed representations (right) 

their potential to “describe, explain and predict a system’s purpose, form, function, 
and state” [17, p. 46].  

For more complex external objects or systems like machines or interfaces, two 
different conceptions of mental models were developed, which lay their emphasis 
either on the structural or on the behavioral and functional aspects of a system 
[19]: while a structural model focuses on the spatial or topological arrangement 
of a system and its parts [22], a behavioral model represents its dynamic and causal 
processes, including the conditional and functional behavior of a system—like how 
a device works when used in specific ways [33]. 

With specific regard to visualizations, Liu and Stasko declare that a mental 
model is a functional analog representation to an external interactive visualization 
system, which preserves structural and behavioral properties of external systems 
[27, p. 1001]. On the structural side, the mental model internalizes the spatial 
layout of a visualization, but it also integrates other visual cues (color, hue, size, 
etc.), overlaid images, and texts [27, p. 1000]. When seeing data of a subject matter 
encoded into a visualization on a display, the analyst’s structural model mirrors the 
“spatial, temporal or distributional relations between the data items” [27, p. 1000]. 
On the behavioral or functional side, mental models include dynamic information 
about a structure’s performance and how it reacts to interactions (see Fig. 3.2, 
right).2 

For users of visualizations, the quality of their internal representations and the 
related distributed reasoning processes depends to a great extent on the design of

2 As we will argue later on, visualization theory would also benefit from integrating narrative 
sequences and stories into the second category of behavioral models (Sect. 3.3.2.2), so that the 
mental model concept can cover representations of static structures and time-oriented sequences 
in an equal fashion—similar to the distinction of cognitive schemata and cognitive scripts [44]. 
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the external representation, as their internal models are modeled on the base of the 
latter.3 

However, traditional descriptions of mental models frequently agree on their 
non-veridic character: they commonly do not mirror external representations in 
an accurate or detailed manner, but they have to be good enough to ensure 
(task-specific) functionality or viability. Whether they are serving for descriptive, 
explanatory or predictive cognitive operations—internal representations mostly do 
so without even coming close to the complexity and full details of its corresponding 
external representations or subject matters. They can remain parsimonious, sketchy, 
and lightweight but can still be functional, viable, or “runnable” for the achievement 
of certain tasks [33]. This is possible only if a mental model is isomorphic to certain 
aspects of the external representation, which again has to show isomorphic aspects 
with regard to the available data about an external phenomenon [20]. 

As a full correspondence or richness of detail is no important indicator for the 
quality of mental models, other quality indicators have been discussed. Among 
them, a model’s inherent coherence and consistency have been emphasized by 
cognitive science research as indicator for the integration and connection of relevant 
aspects into the internal representation [40, 46, 54]. In the following, we will 
elaborate on the role of visualization design for the construction of mental models 
and for the coherent integration of information. 

3.3 Designing Visualizations from a Mental Models 
Perspective 

The outlined theory of distributed cognition and model-based reasoning allows to 
reflect on the interplay of visualization and cognition in a synoptic fashion and to 
reframe known challenges for visualization design from a generic model-building 
perspective. In the following, we will focus on two major visualization challenges 
and show how they can be theoretically unified and understood as challenges of 
model development. Firstly, we will look at the challenge to initially construct 
a mental model, when users work with a dataset and/or tool for the first time 
(Sect. 3.3.1). Secondly, we will reflect on the challenge to integrate information from 
multiple views into larger mental macro models (Sect. 3.3.2). This can be done by 
spatial or synchronic coherence techniques (Sect. 3.3.2.1) or by temporal coherence 
techniques, commonly referred to as “narrative visualization design” (Sect. 3.3.2.2).

3 Due to the prevalence of user-oriented design, the quality of visualizations as external repre-
sentations is tied back to the quality of the internal representations that they generate (e.g., the 
utility, efficiency, correctness, esthetic appeal, etc.). Arguably, it is this circle, which makes it 
relevant for visualization designers to know about cognitive principles (i.e., from Gestalt and color 
perception to more complex model construction and reasoning processes) to design for the effective 
amplification of perceptual and cognitive processes. 
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3.3.1 Supporting the Initial Construction of Mental Models 

Based on their first impression of a visualization, the users form a tentative mental 
model, which can be further manipulated and elaborated in working memory. How 
much effort has to be put into this construction, and which structure and function 
this initial mental model includes, depends on a number of factors—including the 
user’s existing internal representations (i.e., visualization literacy, prior knowledge, 
domain knowledge), situational factors (i.e., data, tasks, motivation), and the 
external representation (i.e., the visualization and system design) itself.4 If these 
factors do not align with each other, there is a risk that users ignore a visualization 
and forego the mental efforts to build up an internal representation. To reduce 
this risk and to facilitate the initial construction of a mental model, users can 
be actively supported, e.g., by introducing the basic structure of the data and its 
visual representation (see Sect. 3.3.1.1) or by functional and behavioral onboarding 
support, e.g., by providing transitions from known concepts and visualizations (see 
Sect. 3.3.1.2). 

3.3.1.1 Structural Construction Support: Advance Organizer 

In cognitive science, advance organizers have been introduced as effective means 
to facilitate the construction of mental models [3]. In general, an advance organizer 
is a structural pre-sketch of the information to be learned which is administered in 
advance, so as to better organize and integrate subsequent details and information 
into this structure. Within the framework of mental models, advance organizers 
serve as external sketches or construction plans for the tentative buildup of internal 
structures, which then are further elaborated in working memory. Thus, the effort 
of model construction is significantly reduced by introducing a simplified model 
of a more complex external representation first. The construction of an internal 
representation thereby becomes an incremental endeavor.

4 A large part of the basic research on mental models has been done in the context of text 
comprehension and with regard to subject matters, where a spatial layout of environmental data 
is given. In such a context, understanding an external representation (e.g., the description of a built 
environment) requires the construction of a mental model, for which a visual-spatial isomorphy 
between relevant aspects of internal and external representations should be achieved—and is 
relatively easy to verify. Despite the fact that (the rules of construction for) external representations 
preserving a spatial layout are widely known and universally established (e.g., by naturalistic 
images, miniature models, or instances of “scientific visualization”), it is known that the initial 
build-up of an internal model (i.e., internalization) is cognitively and energetically demanding. 
This holds even more true for the internalization of pictures which spatialize abstract or conceptual 
data due to the rules of a diagrammatic syntax (often summarized as techniques of “information 
visualization”). Especially, if the users are not familiar with the rules of construction, they face 
higher barriers as they have to build up both: a (structurally and behaviorally) isomorphic model 
from the external representation and a basic understanding of the principles or rules of image 
construction (visualization literacy [6]). 
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Advance organizers are known to support mastery of content in nonlinear, 
unstructured environments like hypermedia [31] or multidimensional information 
environments [57]: they not only provide a conceptual overview and facilitate navi-
gation in more complex information spaces but can also raise curiosity and interest. 
An advance organizer can be graphical or textual, but graphical representations have 
been claimed to be less ambiguous and more concise than textual ones [9]. 

Advance organizers for visualization systems can take different forms: (1) they 
give a simplified overview of the data in a selected single view (e.g., a simplified 
visualization, a picture of a visualization anatomy, or a thumbnail preview) or 
(2) they present structural information on a dataset [46]. Also, the widely known 
visual information seeking mantra “overview first, zoom and filter, then details-on-
demand” [48, p. 337] equals an argument for incremental model construction, so 
that overviews internalized in advance allow to organize the subsequent intake of 
more detailed information. 

For more complex datasets, which encompass more data dimensions than can be 
displayed in one single view, a structural data model can facilitate the understanding 
of the corresponding more complex visualizations, e.g., as given by multi-view 
systems (see Fig. 3.3, right): after introducing multiple data dimensions, they can 
support the initial construction of internal representations for individual views and 
illustrate their integration into compound visualizations (and internally into mental 
macro models) later on. 

Fig. 3.3 Advance organizer (left) depicting the structure of a multidimensional dataset, whose 
encoding into specific visualizations within single views (center) and compound visualizations 
(right) could be visually traced
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3.3.1.2 Behavioral Construction Support: Onboarding Techniques 

Visualizations are interactive, artificial images, for which users do not only have to 
learn their visual structures (i.e., their construction principles and their visual-spatial 
Gestalt) but also their behavior via tool functions—especially for the first time 
users. From a mental model perspective, this has been addressed as the need to also 
build up functional or behavioral mental models (Fig. 3.2, right-hand side). While 
many visualization tools convey such behavioral knowledge with help functions 
and text or video tutorials, some of this knowledge can also be introduced by 
visualization onboarding techniques, which help “users in reading, interpreting, and 
extracting information from visual representations of data” [52, p.2]. Especially 
novel visualization techniques or complex visualization systems require a certain 
amount of training and learning. 

Onboarding support for web-based visualization tools is often provided with 
guided tours, step-by-step wizards, or initial overlays, which highlight the most 
important parts of the graphical user interface and interaction options for the first 
time visitors [52]. As such, the users learn what they can do with the visual 
representations on screens and how they behave due to user interaction. 

Another form of functional onboarding support is to provide training via exam-
ples [15]: the users are walked through visualizations by means of an exemplary 
dataset. During this walk-through, they construct a prototypical functional mental 
model incrementally and can elaborate it later on for their own datasets. 

An interesting onboarding technique for the structural aspects of visualizations 
(especially with regard to the origins of mental model research in the field of 
spatial cognition [54]) is the use of seamless transitions, which allow to trace 
the re-arrangement of familiar spatial constellations into abstract (information) 
visualization layouts. These techniques help to transfer structural knowledge (and 
context) from existing mental models into novel diagrammatic constellations [42] 
(see also Sect. 3.3.2.1). 

3.3.2 Supporting the Integration of Information from Multiple 
Views 

Complex visualization systems frequently operate with multiple views [4]. Such 
systems require sensemaking and model building on multiple levels of information 
integration: their users do not only have to build up internal representations for the 
single views but also an integrated compound representation, which we refer to as 
mental macro model (Fig. 3.4, top right). 

Information integration on a compound or macro level requires additional 
cognitive effort. In the following, we will discuss two approaches to support the 
construction of internal macro models: (A) either multiple distinct mental models of 
individual views are connected in a parallel or synchronous fashion (see Sect. 3.3.2.1
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Fig. 3.4 Depiction of a complex visualization system from a distributed cognition perspective, 
with external representation components in blue and internal representation components in green. 
Both layers contain basic model-building cycles on the left-hand side, which are coupled by 
perception and interaction dynamics (gray). These basic cycles are then extended by macro 
modeling cycles (right-hand side) 

or (B) the mental model of an individual view is sequentially connected to novel 
views (commonly referred to as visual narration or storytelling, see Sect. 3.3.2.2). 

3.3.2.1 Synchronous Integration: Coordination and Linkage of Views 

When confronted with multiple views in parallel, users have to mentally connect 
and integrate information from all views to assemble a bigger picture and to achieve 
a more comprehensive understanding. Without further support, users will build up 
unconnected mental models first, which have to be interconnected with significant 
cognitive effort later on to allow reasoning on their integrated data [22]. In this 
context, the design of coordinated visualizations supports coherent information 
integration and macro modeling from the beginning. 

By offering multiple views in parallel, their diverse encodings are brought into a 
spatially adjacent compound constellation, which offers complementary analytical 
perspectives for synchronous contemplation [41]. To better connect information 
from these views, the visual encoding of data should be handled consistently across 
different views (e.g., consistent use of colors, labels, directions of axes, or other 
design decisions) [40]. 

Further integration support is usually provided by coordinated interaction tech-
niques, which enrich a visualization system with further coherence cues to establish 
synchronous connections between juxtaposed views. Among the most common 
techniques are coordinated selection and highlighting or linking and brushing or 
also synchronized panning, scrolling, or zooming [35]. Coordinated interaction
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methods provide instant visual modifications of the same data elements in different 
views, which enable the synchronous perceptual integration of parallel views. 

An interesting option to literally interconnect multiple views has been proposed 
by Collins and Carpendale [10]: as a method to explore relations between two 
different views, VisLink connects the same data items on different canvases with 
explicit links and thus establishes synchronous perceptual bridges. While this 
method could also be extended beyond two views, it is expected to become visually 
complex soon. 

3.3.2.2 Sequential Integration: Narration, Storytelling, and Seamless 
Transitions 

A second major principle for connecting multiple views is given by sequential 
coherence techniques which interconnect individual views sequentially, i.e., over 
time. In this case, it is not spatial, but temporal adjacency—commonly together 
with a range of other narrative cues and connections—which provide the binding 
relations. Practically, as a pure sequence, sequential integration of visualizations 
utilizes an observer’s memory to hold transient perceptions of single views present 
in the working memory and to store them as a compound sequence. As such, 
pure sequential integration also requires significant mental effort. Therefore, var-
ious other time-oriented connection techniques have been suggested to facilitate 
sequential information integration. 

In a visualization context, narration and storytelling became a widely used 
and much-debated design approach over the last decade. Kosara and Mackinlay 
[25] proposed to use storytelling as a more effective way of communicating and 
presenting data: “Stories have proven to be not only an incredibly popular way of 
conserving information and passing it on, they also provide the connective tissue 
between facts to make them memorable” [25, p. 2]. They define a story as a causally 
related chain of individual visualizations (see Fig. 3.5, right). This ordered sequence 
often, but not necessarily, corresponds to a chronological course of events and 
provides the user with a clearly defined path through the data. 

From a mental model perspective, the relevance of the growing work on visu-
alization storytelling seems obvious: as a major complement to space-leveraging, 
synchronous integration techniques, sequential storytelling utilizes time as an 
“orthogonal” dimension of information integration (see Fig. 3.5, right) and thus 
provides the second major coherence technique for the construction of mental 
macro models. Specific examples for such a narrative integration are instantiated 
by slideshows (i.e., multiple visualizations further interwoven by spoken or written 
language), magazine or scrollytelling designs (e.g., visualizations interwoven by 
text), or animation and film-based approaches [47]. 

Within such sequential arrangements, animated transitions can further strengthen 
the coherence between different views by offering fluid and traceable incremental 
changes. Various forms of morphing can support the translation from one spatial-
ization method to another and thus provide more elastic macro designs [5]. By
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Fig. 3.5 Macro model construction based on visual coherence techniques for the synchronous 
interconnection of multiple views (left, Sect. 3.2.1) and their sequential interconnection, commonly 
referred to as narrative visualization or storytelling (right, Sect. 3.2.2) 

changing layouts incrementally—as opposed to cutting abruptly—the spatial re-
arrangement can be traced and the shifting of relevant well-known elements can 
be followed smoothly and fluidly [13]. These techniques correspond to the concept 
of preservation of the mental map [1], which aims at developing algorithms that 
keep the number of changing elements to a suitable minimum. 

Results from cognitive science [22] and visualization [42] provide evidence that 
it is cognitively more efficient to elaborate an existing mental model and transform 
it into a new arrangement than to combine two different mental models, which 
puts sequential integration in favor of a synchronous integration. The unmediated, 
synchronous presentation of two separate layouts can easily lead to two separate 
models, whereas their sequential interconnection via storytelling or seamless transi-
tions allow the adaptation and extension of an existing mental model, resulting more 
likely in one coherently integrated mental model with less cognitive effort [22]. 
Results of studies with users prove the value of this technique: “transitions could 
save hours to be spent with reading a manual otherwise” [49, p. 637]. Taking these 
considerations into account in a recent study, we implemented a seamless transition 
from a familiar 2D map view to a 3D space-time cube to help laypersons, who are 
unfamiliar with this visualization technique, to understand the functionality of this 
visualization. The transition supported users to connect the new visualization with 
their mental model of a map and was evaluated as very helpful [58]. These empirical 
results indicate that the direction of a transition is very important: designers should 
carefully consider which view is presented first—what Tominski et al. refer to as 
“prioritized views” [53]—and knowledge of the users’ mental models can support 
this decision. 

Obviously, synchronous and sequential information integration can also play 
together in various ways, which has been discussed as combinations of author-
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driven and reader-driven approaches [47]. While exploration-oriented, synchronous 
compound visualizations do not prescribe any specific order or linearity, narrative, 
or author-driven visualizations guide through their materials in a predefined way. 
Advanced guidance systems thus often search for a balance of both approaches. Like 
an advanced organizer (see Sect. 3.3.1.1), they introduce the readers to the story first 
and thereby support their construction of a first mental model. Later, users can freely 
explore the visualization but can better integrate further information into their initial 
mental model. 

3.4 Discussion 

Current visualization research builds on different cognitive frameworks, producing 
a fair amount of terminological and theoretical diversity—which becomes also 
visible throughout discussions about visualization foundations [39]. Different the-
ories in visualization focus on different aspects of the analysis process: whereas 
sensemaking theories [38] provide a broad framework for the description of the 
analysis process, insight theory [34] focuses on the outcomes of the analysis 
process. In contrast, the concept of mental models [27] fills a gap in visualization 
research: how do users represent a visualization (system) internally to use it for 
distributed sensemaking processes and to generate single or interconnected insights? 
A better understanding of internal representations can help us to better understand 
the contributions of visualization and cognition to a mutually connected (i.e., 
“distributed”) modeling endeavor. Such a unified, model-based approach can also 
help to understand some challenges of visualization (systems) better—and to direct 
attention to areas where users frequently need additional model-building support. In 
this chapter, we drew together existing techniques to support model construction 
(i.e., for the initial construction of single views and the further connection of 
multiple views) and thus aimed to illustrate how otherwise separated visualization 
topics and debates could be organized and mediated in a more unified fashion. 

The concept of mental models has received a considerable amount of research in 
cognitive science—but also beyond. When we transfer these findings to the field of 
visualization, some new questions arise, which remain to be solved in the future. 

3.4.1 Macro Models 

We consider visualization to be a key competence and practice to provide “bigger 
pictures” of complex topics—from society, technology, or ecology—to the society. 
Such subject matters are commonly represented by complex text collections only 
and remain invisible to the unaided eye. Such bigger pictures—especially in the 
form of well-designed visualization systems—can be worth a whole text collection. 
But how large can the resulting mental models actually get and how much



78 F. Windhager and E. Mayr

information can be memorized? How much visualized information can users hold 
in their working memory (and later recall from their long-term memory) when 
a visualization system gets more complex? This size will very likely depend not 
only on the users’ motivation and domain knowledge but also on existing internal 
representations they can build on. But the design of the visualization (system) and 
the coherence techniques discussed in this chapter also play a decisive role. In this 
context, we want to argue for the collective development of a whole catalog of 
“templates” for mental macro models and corresponding visualization techniques. It 
stands to reason that such an endeavor should combine a more systematic collection 
of compound visualization designs (see Sect. 3.3.2) with a collection of visual 
(macro) metaphors [14], which could help to organize the development of shared 
mental macro models in education, organizations, or journalism. 

3.4.2 Model Quality, Stability, and Depth of Internalization 

A certain challenge for the use of the mental model concept comes from its common 
connotation to describe a relatively autonomous and stable entity. However, it is 
an open question to which degree of detail, coherence, autonomy, and longevity 
internal representations of visualizations actually rise—especially in cases where 
the first time users meet complex visualization systems. Even if mental models 
are said to form as non-veridic, sketchy, and lightweight frames of a visualization 
(Sect. 2.2), we can expect significant differences in terms of internal modeling 
diligence and coherence for different users in different contexts. In this context, 
Tversky [54] suggested the term of cognitive collages for internal representations 
which do not cross a certain threshold of consistency and coherence, but rather 
appear as a distorted mix-up of partial information. In terms of modeling depth, 
it is an open question if (aside from a visualization’s structure and behavior) mental 
models also include rich information about the underlying data, since we can 
offload these to the visualization, or whether we internally represent also data in 
our working memory [27]. 

3.4.3 Advancement of Story Models 

Another conceptual challenge comes from the need to evenly cover internal 
representations of static structures and dynamic processes with the mental model 
concept. While the differentiation of structural and behavioral mental models 
already provides a useful distinction, we think that the behavioral model concept 
should be further elaborated and enriched to also cover all kinds of time-oriented 
phenomena, including transient sequences, processes, dynamics, or complex stories. 
While stories in visualization have been robustly defined as causally related chains 
of individual visualizations [25], we consider a rich body of work on narrative
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mental models (“story world”, cf. [55, 60]) in the area of text comprehension and 
narrative research to provide material for the future refinement of narrative visu-
alization techniques [29]: Recipients usually have a whole repertoire of schemata 
on how a story is built, how it progresses, and what its constituents are [51]. 
These schemata reduce cognitive load and allow stories to be processed fast and 
efficiently—not only in texts but also in narrative visualizations. Narrative cues and 
coherence indices (information on time, place, protagonist, cause, and goal [59]) 
direct their attention and help recipients to build up and update a narrative mental 
model. On a more abstract level, stories guide recipients through a bigger picture by 
providing various sequential links between events or places, or, generally speaking, 
between different local data elements. 

3.4.4 Modality 

Are mental models predominantly visual, verbal, or multimodal structures?Working 
memory research distinguishes a visual component (visuo-spatial sketchpad) from 
a verbal component (phonological loop) for the separated processing of incoming 
information. Mental models have been associated to both modalities but are 
more often allocated on the visual side, where they can also flexibly integrate 
multimodal information (such as tags, comments, or (narrative) context information 
in the case of visualization). Related theories (like the dual coding theory [8] or  
integrated models of text and picture comprehension [45]) often suggest a two-
layered architecture with numerous transmodal connections for visual–verbal and 
verbal–visual translation. This question is especially relevant for the assessment of 
mental models (see [28] for a summary of evaluation techniques from cognitive 
science): many evaluations build on some kind of verbal reporting (for instance 
from think aloud protocols or interviews), but if a mental model is mainly visual, 
are such methods valid? Or do they raise additional cognitive load to translate visual 
information to verbal one? 

3.4.5 Sharing Mental Models 

Visualization design—and the evaluation of internal representations—is frequently 
oriented toward the amplification of individuals’ performance. By contrast, we see 
a need to go beyond the individual and strengthen research into visualizations as 
means for the development of shared mental models—and the need for evaluation 
methods able to measure these collaborative efforts. Not only to arrive at more 
agreed-upon models (e.g., in collaborative constellations and teams) but also to 
become aware of meaningful modeling differences, where the understanding of 
complementary roles, perspectives, and positions matter for the understanding of 
a complex subject matter. To that end, we also consider “discursive” visualization
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practices a desideratum as a means to collectively construct perspective-rich exter-
nal representations. Such discursive visualizations would make traces and layers 
of modeling controversies visible—and thus foster the understanding how and to 
which degree visual and mental models of public, complex subject matters actually 
converge. 

The theory of mental models provides a well-sourced cognitive framework for 
visualization design with the potential to translate into a unified and instructive 
model-building framework from a distributed cognition perspective. While this 
work has been started a while ago [26, 27], it still contains a range of open questions. 
This chapter introduced the theoretical background, implications for visualization 
design, and suggestions for their future development. As such, this framework might 
further unfold its potential to instruct visualization research and teaching—and 
to draw attention to general questions of (macro) model development support for 
visualization novices and non-experts—which tend to go unnoticed in an expert and 
performance-oriented research field. 
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Chapter 4 
Improving Evaluation Using 
Visualization Decision-Making Models: 
A Practical Guide 

Melanie Bancilhon, Lace Padilla, and Alvitta Ottley 

Abstract In visualization research, evaluation is a crucial step to assess the impact 
of visualization on decision-making. Existing work often gauges how good a 
visualization is by measuring its ability to induce accurate and fast judgment. 
While those measures provide some insight into the efficacy of a graph, underlying 
cognitive processes responsible for reasoning and judgment are often overlooked 
when they can have significant implications for visualization recommendation. 
Cognitive processes do not need to be a black box. There exists multiple models 
that describe decision processes, such as theories from behavioral economics and 
cognitive science. In this chapter, we compare and contrast different models and 
advocate for the inclusion of cognitive models for visualization evaluation in 
the context of decision-making. The goal of this work is to show visualization 
researchers the advantages of adopting a more mechanistic approach to evaluation 
at the intersection of visualization and cognitive science. 

4.1 Introduction 

We make decisions based on data every day, ranging from trivial to complex. Such 
choices could include when to leave the house to catch the bus, take an umbrella 
given the chance of rain, or invest in the stock market given the historical trends. 
In many instances, charts and graphs have become an integral part of our decision-
making process. Visualization research has provided valuable insight into perceptual 
science and has led to the amelioration of chart design and visualization recom-
mendations. Charts frequently appear in information communication, data analysis, 
sensitization campaigns, and even medical diagnostics and can significantly impact 
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people’s lives. But all charts are not equal. When a new graph or chart is designed, 
it is essential to conduct an evaluation under realistic decision-making conditions to 
understand and foresee its effect on real-life decisions. 

However, it can be hard to know if an evaluation is close enough to natural 
decision-making conditions to provide meaningful insights into the efficacy of a 
visualization. One way to conduct rigorously valid evaluations is to understand and 
simulate the underlying mental mechanisms at work when a viewer completes the 
real-world task. Fortunately, cognitive scientists have extensively studied cognitive 
mechanisms responsible for interpreting and misinterpreting visual designs under 
different modes of reasoning. For example, dual-process theory posits that there 
exists two types of decisions operating under distinct cognitive processes: intuitive 
(Type 1) and strategic (Type 2) decisions, which require significantly more effort 
than Type 1 [33]. In this chapter, we dive into multiple prominent perspectives of 
decision-making. We discuss how the researchers can apply frameworks and models 
pertaining to visualization design and evaluation in the context of decision-making. 
We propose that dual-process cognitive models are some of the most useful and 
easily applied for visualization research. This chapter will be helpful for designers 
and visualization researchers looking to adopt a more granular approach to decision-
making and conduct holistic evaluations for better visualization recommendations. 

4.1.1 Evaluation Methods for Decision-Making 

Research on visualization evaluation is vast and varied [17, 43], with high tendencies 
toward evaluating visualization based on speed and accuracy in perceptual judg-
ments [64]. A relatively small number of studies have focused on evaluating people’s 
visualization-aided decisions. Researchers have investigated how visualizations 
impact attitudes toward risk and hypothetical decisions [22, 62]. For example, Ruiz 
et al. [62] conducted a study where they asked at-risk patients to decide whether they 
would opt for screening based on hypothetical risk information about a disease [62]. 
They found that people are more risk-averse when presented with icon arrays. Kay 
et al. [37] evaluated how well different visualizations communicate the uncertainty 
of transit data by asking participants to estimate the likeliness of bus arrival times 
on a scale of 0 to 100 [37]. 

In traditional visualization empirical studies, visualizations are often evaluated 
by their ability to prompt accurate and fast responses in behavioral tasks, that 
may or may not involve making a decision. While it is common to extrapolate the 
appropriateness of visualizations for decision-making through these performance-
based measures, there are less attempts to evaluate visualization designs based on 
the quality of the decisions they elicit [51]. Empirical evaluations of visualization 
are generally challenging [9, 17, 56]. Thus, one possible reason for the lack of 
evaluations with decision-making is that it is generally more straightforward to 
gauge effectiveness via the speed and accuracy of perceptual judgments. Consider, 
for example, the chart shown in Fig. 4.1, which shows a given person’s chance
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Fig. 4.1 A bar chart 
comparing the survival rates 
after one year of surgery 
versus conservative 
management for a 
80-year-old prostate cancer 
patient [23] 

of surviving prostate cancer after one year if they choose to have surgery (e.g., 
radical prostatectomy) compared to conservative treatments (e.g., watchful waiting). 
One could evaluate this chart based on how well it facilitates fast and accurate 
comparisons of the two quantities, or based on the responses from semi-structured 
interviews with prostate cancer patients [23]. Experiment protocols like these are 
more straightforward than those that measure decisions because it is feasible to 
define a ground truth or expected behavior for the analysis of study findings. 

In practice, we often use performance-based findings to inform the selection 
of visualization designs, implying that accurate decoding likely leads to better 
and more informed decisions. Based on our current understanding of perceptual 
judgments, the bar chart in Fig. 4.1 uses position for data encoding, and therefore is 
ideal for comparing quantities and seeing small differences [12, 13]. However, one 
could reasonably assert that the difference between the survival rates for surgery 
(100%) and conservative treatment (96%) is statistically insignificant, but the bar 
chart might inadvertently emphasize a potentially minor disparity. Existing studies 
show that the ideal visualization depends on the task. For example, the superior 
representation for magnitude estimation might not be optimal for part-to-whole 
judgments [20, 65, 66]. Some researchers have used simulations to observe the 
direct impact of visualization design on decisions. In one study by Bancilhon et 
al. [4], participants played a lottery game and chose to either enter the lottery or 
receive guaranteed monetary gains based on five standard visualization designs. 
They analyzed the quality of the decisions based on economic optimality and found 
that people made significantly more risk-seeking decisions with circle and triangle 
charts [4] (see Sect. 4.3.1.2). 

Decision-making is complex and multifactorial. In addition to the graph’s 
appropriateness, a patient’s decision to have surgery (or not) will depend on 
various factors including illness severity age, commodities, and personal finances. 
People are also prone to various cognitive biases [16], and individual differences in 
personality and cognitive abilities may also influence usability and choice [40, 53]. 
At a fundamental level, the decision-maker’s perspective drives the decision, and the 
typical approach of defining a ground truth in an evaluation is non-trivial. Despite 
this challenge, other fields have demonstrated success in modeling and predicting, 
and reasoning about how people make decisions [33, 35, 55, 57]. We argue that
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for visualization to be a practical tool for supporting decision-making, we need to 
understand the underlying cognitive processes behind decision-making and adopt a 
unifying cross-discipline framework to evaluate visualization in this context. 

To aid this discussion, we adapt Balleine’s definition of decision [3]: 

A decision is a choice between competing courses of actions [3]. 

4.2 The Science of Making Decisions 

Decisions are governed by complex systems of reasoning that scholars have studied 
for decades. Researchers in the visualization community have pursued two dominant 
approaches to study decision-making under risk. The first provides a detailed and 
quantifiable view of decision-making. It assumes that humans make decisions 
rationally by weighing the risk and expected outcome of different prospects, two 
factors that can be measured and modeled. The second posits that many factors can 
influence decision-making. It proposes that humans make both intuitive (Type 1) 
and strategic (Type 2) decisions and that decision-makers usually default to using 
intuition. These two distinct types of decisions operate under a dual-process system. 
To improve visualization research in the context of decision-making, it is crucial to 
understand the meaning and implications of decision-making under both umbrellas. 
We structure this chapter around two prevalent approaches: The Utility-Optimal 
Perspective and The Dual-Process Perspective. 

4.3 The Utility-Optimal Perspective 

Behavioral economists have long studied how people make choices under risk by 
investigating prospects or gambling scenarios. A prospect is a contract: 

.[(x1, p1), (x2, p2), . . . , (xn, pn)], (4.1) 

which yields . xi with probability . pi , where .
∑n

i=1 pi = 1 [35]. Prospects provide a 
simple model for understanding risky decisions. The classical method for evaluating 
a gamble is through assessing its expected value. The expected value of a prospect 
is the sum of the outcomes where the probabilities weigh each value: 

.ev =
n∑

i=1

pixi . (4.2)
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Consider the gambling scenario from Kahneman and Tversky’s book [35]: 

Which do you prefer? 
Option A: 50% chance to win $1000, 50% chance to win $0 
Option B: $450 for sure 

The expected value of option A is 500 (..5 × 1000 + .5 × 0) and the expected 
value of option B is 450 (.1 × 450). A rational decision-maker would then choose 
option A over option B. However, most people would choose the sure payment of 
$450. This example highlights the perhaps obvious conjecture that humans are not 
always rational [35]. 

Expected Utility Theory (EUT) is one of the foundational theories of decision-
making and has served for many years as both a model describing economic 
behavior [21] and a rational choice model [38]. In particular, it states that people 
make choices based on their utility—the psychological values of the outcomes. For 
instance, if a person prefers an apple over a banana, it stands to reason that they 
would prefer a 5% chance of winning an apple over a 5% chance of winning a 
banana. Using EUT, we can assess the overall utility of a gamble: 

.EU =
n∑

i=1

piu(xi), (4.3) 

where the function u assigns utility to an outcome. We sum the utilities u of the 
outcomes . xi weighted by their probabilities . pi . This model has its limitations. 
It also assumes that humans are consistent and primarily decide on prospects 
based on their utility [35, 69]. Nevertheless, EUT provides a standardized tool for 
researchers to evaluate peoples’ behavior when choosing among risky options and 
is the foundation for the other dominant theory in behavioral economics, Prospect 
theory [35]. 

Unlike EUT, prospect theory embraces the human factors present in decision-
making. Kahneman and Tversky [35] are the pioneer contributors to this knowledge 
on bias in decision-making. For example, in their early work, they found that 72 
out of 100 experiment participants favored the option of getting $5000 with a 
probability of 0.001 (e.g., a small probability event) over the prospect of getting 
$5 for sure [35]. Both options have the same expected value, yet most participants 
favored the probability associated with getting $5000. In its simplest form, we can 
represent the equation for prospect theory as 

.V =
n∑

i=1

π(pi)υ(xi), (4.4) 

where the function . υ assigns value to an outcome and the function . π is a probability 
weighing function that encodes the idea that people are likely to overreact to small 
probabilities and underreact to large probability events. In summary, prospect theory 
stipulates that (1) people tend to favor the option of getting a large gain with a small



90 M. Bancilhon et al.

probability over getting a small gain with certainty and (2) people tend to prefer a 
small loss with certainty over a large loss with tiny probability. 

4.3.1 Using Utility-Optimality to Evaluate visualizations 

Visualization researchers have leveraged utility-optimal theories to investigate 
how visualization impacts decisions under risk. By approaching decision-making 
from this angle, they create an environment where choices have weights, and 
their evaluation considers the utility-optimal option. We highlight two empirical 
studies from the visualization community and examine their experimental design, 
methodology, and research questions. We will begin with a recent publication 
investigating the impact of uncertainty visualization design by simulating a fantasy 
football scenario. 

4.3.1.1 A Fantasy Football Study 

Kale et al. [36] leveraged utility-optimal theories to observe effect size judgments 
and decision-making with the four uncertainty visualizations. They used a fantasy 
football game to elicit decisions under risk. Participants were shown the number of 
points scored by a certain team with and without the addition of a new player. First, 
they asked participants to estimate a measure of effect size by asking the following 
question: “How many times out of 100 do you estimate that your team would score 
more points with the new player than without the new player?”. They also asked 
participants to make binary decisions indicating whether they would Pay for the new 
player or Keep their team without the new player. On each trial, the participant’s 
goal was to win an award worth $3.17M, and they could pay $1M to add a player to 
their team if they thought the new player improved their chances of winning enough 
to be worth the cost. 

They tested four uncertainty visualizations: 95% containment intervals, hypo-
thetical outcome plots (HOPs), density plots, and quantile dot plots, each with 
and without means added. They found that while adding means to quantile dot 
plots produced significantly more utility-optimal decisions at low variance, it had 
no reliable effect on bias in magnitude estimation. Similarly, adding means to 
HOPs caused significantly more bias in magnitude estimation across both low and 
high variance but had no reliable effect on decisions. By evaluating uncertainty 
visualizations using utility-optimality, Kale et al. [36] observed a decoupling of 
performance across tasks, where the visualization designs that support the least 
biased effect size estimation do not support the best decision-making and vice versa. 
The authors attribute this inconsistency to the reliance on different heuristics across 
the two different tasks, consistent with Kahneman and Tversky’s theory [35]. This 
finding highlights the value of leveraging utility-optimal theories when studying 
visualization for decision-making.
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4.3.1.2 A Classic Lottery Game 

Many studies that leveraged utility-optimal decision-making theories employed 
tasks with hypothetical gains and losses (e.g., [10, 31, 36, 49]). However, it is unclear 
if people make the same risk judgments when gains and losses do not tangibly affect 
them. To evaluate visualization decision-making with greater ecological validity 
(i.e., more closely matching real-world conditions), Bancilhon et al. [4] created a 
gambling game that immersed participants in an environment where their actions 
impacted the bonus payments they received. The experiment investigated the effect 
of five charts on decision-making. Replicating the experiment design of prior work 
in the economic decision-making domain [8], the researchers presented participants 
with two-outcome lotteries: take the sure gain or gamble at a risk. The experiment 
employed a point system for payoff quantities where 1 point equaled $0.01. The 
probabilities, . pi , were drawn from the set .P = {.05, .1, .25, .5, .75, .9, .95} and the 
outcomes . x1 and . x2 ranged from 0 to 150 points ($0 to $1.50). 

Figure 4.2a shows an example of the lottery sheet used in the study. At the end 
of the experiment, the game randomly selected one row from each of the 25 lottery 
sheets that they saw, and the participant’s choice in that row determined their bonus. 
If the participant chose the sure payout in the selected row, their bonus increased 
by that amount. If they opted to enter the lottery, the game simulated the lottery to 
determine the payment, with the potential gains and the probabilities as parameters. 

Overall, the findings from the study [4] validate that we can use utility-optimal 
theories to evaluate visualization designs, and that the latter can influence gambling 
behavior. They had three major findings. First, the icon array was most likely to 
elicit risk neutrality and is, therefore, the most effective design for decision-making. 
Second, they found that participants who saw a bar chart exhibited behavior that 
was slightly risk-averse, mirroring behavior in the control text-only group. Third, 
the triangle chart and circle chart elicited risk-seeking behavior with the greatest 
deviation from risk neutrality. It is important to note that these findings are in 
line with the magnitude estimation from the prior literature [13] that shows that 
proportion estimates with bar charts are more accurate than with triangle and circle 
charts. 

4.3.2 Outlook on Using Utility-Optimal Theories for 
Visualization Evaluation 

Although we only highlighted a few studies in this section, it is essential to note 
that other researchers have also examined decision-making with visualization using 
a similar framework (e.g., [10, 26, 31, 49, 71]). For example, Padilla et al. [49] 
conducted a scenario where participants made resource allocation judgments by 
comparing the cost of sending cold-weather aid to alpaca farmers in Peru who 
were at risk of losing their livestock due to cold temperatures and the expected
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Fig. 4.2 The charts and lottery sheet used in the study by Bancilhon et al. [4]. Participants played 
a gambling game in which their choices determined their bonuses 

value of the penalty for not sending aid, resulting in the deaths of alpacas (see 
also, [10, 31]). Perhaps most importantly, for visualization evaluation, the utility-
optimal perspective provides a tractable approach to quantifying and modeling 
decision-making under risk. In both Kale et al.’s and Bancilhon et al.’s studies 
[4, 36], the researchers leveraged the framework to isolate the effect of visualization 
design. In some cases, their results suggest that using visualizations might help to 
reduce biases and guide people towards utility-optimality [4].
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It is typical for researchers to design games or simulations to observe people’s 
decisions in action. In many cases, it is difficult, if not impossible, to test the impact 
of visualizations on decisions in real life as it may give rise to safety, health, and 
ethical issues. For example, it might be unsafe and unethical for a gambling game to 
test the effect of visualizations that communicate information about a severe health 
condition that a participant has or a natural disaster affecting the participant at the 
time of the study. The utility-optimal framework using the situational scenarios in 
the two studies [4] and [36] provides a good test bed for evaluating visualizations 
for decision-making. In order to apply this framework to behavioral studies, there 
needs to be a cost associated with each course of action. The utility-optimal decision 
should be defined as the one where prospective gains are maximized and losses are 
minimized. By quantifying user choices and comparing them to the utility-optimal 
decision, we can infer the risk behavior elicited by the visualization design. It is 
important to take into account people’s patterns of risk behavior since humans do 
not normally default to risk neutrality regardless of the type of representation used. 
By providing an incentive to decision-makers, such an experiment design can more 
closely mimic real-life choices over hypothetical decision scenarios. 

While Bancilhon et al. [4] have shown that the visualizations that lead to better 
accuracy also induce more optimal decisions, Kale et al. [36] have shown that the 
visualization designs that lead to the least bias did not lead to the most optimal 
decisions and vice versa. First, this shows that task and visualization choice matter 
in evaluation. Second, it raises an important question: how do we define the best 
visualization when accuracy and utility-optimal decisions are inconsistent? In Kale 
et al.’s study [36], one approach to determine the best uncertainty visualization 
would be to pick the one with the best compromise between high accuracy and 
optimal decision-making. Huang et al. [27] have developed a model of visualization 
efficacy that includes speed, accuracy, and cognitive load, which is often overlooked. 
One way forward could be to refine this model to include decision-making. Another 
approach would be to simply not attempt to choose a single best visualization for 
reasoning about uncertainty. Kale et al. [36] have shown that different visualizations 
are best for different tasks. There needs to be a common recognition in the 
visualization community that a one-size fits all approach could be obsolete. 

Furthermore, using utility-optimality for visualization evaluation raises another 
crucial question: how do we define the best decisions? Some would argue that 
rationality should be the golden standard since it maximizes the potential outcome. 
Bancilhon et al. [4] question whether or not that should be the case. If the goal is 
rationality, their findings suggest that the icon array was the most likely to elicit risk-
neutral choices. However, since people make decisions according to their personal 
inclination to risk, there might be a cost in attempting to steer them toward utility-
optimality. Perhaps an ideal visualization should support the users in making a 
decision based on their individual risk behaviors. 

In the next section, we examine a different perspective on decision-making, 
positing that humans default to intuitive reasoning when making decisions. We 
discuss working memory as a metric for usability in visualization decision-making 
(Fig. 4.3).
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Fig. 4.3 An illustration of 
Type 1 and Type 2 reasoning 
as conceptualized by Tversky 
and Kahneman [33]. Type 1, 
our intuitive system, is at the 
forefront of decision 
processes, while Type 2, our 
analytic system, operates 
secondarily 

Working memory consists of various mental components that can hold a 
limited amount of transformable information for a finite period [14]. In 
visualization research, working memory is commonly associated with mental 
effort [47]. Note that there is an ongoing debate on the definition of working 
memory [14] 

4.4 The Dual-Process Perspective 

In addition to the biases associated with gains and losses (e.g., prospect theory), 
many other cognitive biases are involved when making decisions under risk. One 
perspective that describes a large body of biases proposes that people rely on 
quantitative reasoning and gist-based intuition—two systems that operate in parallel 
[33]. 

Daniel Kahneman published a book entitled Thinking Fast and Slow, where 
he summarized decades of research on a dual-system of decision-making [33]. In 
his earlier work, his collaborators and himself differentiated between two types 
of processing systems, termed System 1 (or intuition) and System 2 (or reasoning) 
[32] (later termed Type 1 and Type 2). Type 1 processing guides our intuition and 
recognition patterns, which occur automatically without effort. In contrast, Type 
2 processing is responsible for analytical thinking and requires directed effort to 
use [33]. 

Dual-Process Theory introduces a reasoning model that formalizes the differ-
ences between Type 1 and Type 2 and their impact on decision-making [34, 67]. 
Proponents of Dual-Process Theory posit that most decisions stem from intuitive 
thinking rather than rational and calculated thinking [33]. Type 1 reasoning involves 
fast and intuitive thinking, while Type 2 is a slow and analytical method of thinking.
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Scholars propose that Type 2 processing uses significant working memory, while 
Type 1 only uses negligible working memory [18]. Using this definition, the 
researchers can determine when people are using Type 2 processing by identi-
fying when people show an increase in working memory demand. Visualization 
researchers have demonstrated how to measure an increase in working memory 
demand using pupillometry (e.g., dilation of pupils [47]), dual-tasking (e.g., doing 
two tasks a once [11, 47]), individual differences measures (e.g., working with 
participants with high- and low-working memory capacity [10]), the NASA-TLX 
(e.g., self-reported work-load [10]), and electroencephalography (e.g., neuroimag-
ing [1]). Type 1 is at the forefront of cognitive processes, and it often requires 
significant effort to switch from Type 1 to Type 2 in order to avoid cognitive 
biases and misleading heuristics. Despite utilizing different strategies, dual-process 
theories propose that the processes do not necessarily occur in separate cognitive or 
neurological systems [19]. 

Other frameworks have adapted the general dual-process perspective as well. 
Notably, Reyna and Brainerd introduced Fuzzy Trace Theory (FTT) [58]. The theory 
posits that people form two types of mental representations from information: Gist 
and Verbatim representations. A verbatim representation is a detailed representation 
of an event that often comprises precise numbers and facts. Gist representation, on 
the contrary, is vague and high-level and captures the essential meaning of informa-
tion. FTT asserts that people make decisions by extracting meaning from verbatim 
input to make a gist-based judgment. According to Reyna and Brainerd [58], 
the human memory contains various reasoning-relevant information, ranging from 
preserving the exact form of input or only retaining abstract representations. People 
operate somewhere between the highest level of gist and the highest level of 
verbatim, on a gist-to-verbatim continuum [58]. Typically, humans rely on the least 
precise gist representation necessary to make a decision, and this characteristic is 
generally referred to as “fuzzy processing preference” [58]. 

Although there is a long history of theories on dual-processes, the high-level 
ideas are similar. They assert that there are two kinds of reasoning. One is implicit, 
intuitive, and unconscious, and the other is explicit, conscious, and slow. For 
simplicity, we will refer to this general class of theories as Dual-Process theories. 

4.4.1 Dual-Process in Decision-Making 

Fuzzy Trace Theory states that people make decisions by extracting meaning 
from verbatim input to make a gist-based judgment. Because precision is often 
associated with accuracy, many believe that quantitative reasoning is superior to 
qualitative reasoning. However, in some cases, fuzzy representation of information 
does not affect reasoning accuracy [60]. Reyna and Lloyd [59] have shown that 
experts in the medical field tend to engage more in gist-based decision-making than 
novices. Tversky and Kahneman made the argument that intuition is a synonym for
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recognition [33]. Experts recognize familiar situations and can therefore make fast 
and accurate decisions even when they are complex. 

Although Type 1 has been proven to be efficient [59, 60], it is also more sus-
ceptible to false first impressions and framing effects [33]. Consider the following 
question: 

A bat and ball cost $1.10. The bat costs $1 more than the ball. How much does the ball cost? 

More than 50% of students at Harvard, Princeton, and the Massachusetts Institute 
of Technology routinely gave the incorrect answer, insisting the ball costs 10 
cents [33].1 Type 1 is at the forefront of cognitive processes, and in order to obtain 
the correct answer, a switch from Type 1 to Type 2 is required to overcome cognitive 
biases. 

Before the acknowledgement of the role of Type 1, many believed that Type 2 
was solely in charge of decision-making operations. Expected Utility Theory posits 
that people make decisions rationally, using Type 2 to compute the utility of events. 
The recognition of dual modes of reasoning lead to the development of prospect 
theory [35] (see Sect. 4.3) and revolutionized decision-making research. 

4.4.2 Dual-Processes and Visualization Evaluation 

In the medical field, researchers have investigated the impact of visualization design 
on gist reasoning. For example, Feldman et al.’s first goal [20] was to investigate 
which graphical formats induced the most accurate perception of quantitative 
information in patients making treatment decisions. Second, they inquired about the 
formats that facilitate processing. The authors highlight the importance of ease of 
processing, especially when the patient feels overwhelmed by the diagnostic. They 
conducted an experiment to test the performance of variations of 6 visualization 
formats. Participants had to minimize how long the visualizations appeared on the 
screen while remaining accurate when answering questions about the charts. They 
were shown two quantities and were asked to make a gist judgment by choosing the 
one that showed the larger chance of survival or the smaller chance of side effects. 
They were also asked to make a verbatim judgment by determining the size of the 
difference. 

In this study, Feldman et al. [20] used response time as a proxy for ease of 
information processing. Their results suggest that systematic ovals, which encode 
data in a natural frequency format, are likely the format that represents the best 
compromise for accurate processing of both gist and detailed information while 
also demanding relatively little effort. Similarly, Hawley et al. [24] conducted an 
experiment investigating gist and verbatim reasoning through similar comparison

1 The correct answer to this problem is that the ball costs 5 cents and the bat costs –at a dollar 
more– $1.05 for a grand total of $1.10. 
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and estimation tasks. They found that viewing a pictograph was associated with 
adequate levels of both gist and verbatim knowledge and that superior medical 
treatment choices were made in both cases. 

In their work, Feldman et al. [20] question the overall effectiveness of vertical 
bars with scales, which was the best visualization for gist reasoning. The authors 
state that many patients demand detail-level information, and they defined the best 
visualization as the one that is effective in eliciting both types of reasoning. While 
this prior work gives evidence that charts using natural frequency encoding perform 
better under both gist and verbatim reasoning in comparison tasks, further research 
is required to examine whether the findings are generalizable to other tasks. 

4.4.3 Outlook on Using the Dual-Processing Approach 
for Visualization Evaluation 

While the Expected Utility Framework provides a method to mathematically model 
decisions, the Dual-Process framework is not straightforward. Feldman et al. [20] 
and Hawley et al. [24] have studied how visualization affects Type 1 and Type 
2 reasoning in a comparison task. Note that it is possible for both processes to 
be used to make a decision. In their respective work, they posit that a magnitude 
estimation task brings about Type 2 reasoning, whereas asking the participant to 
make a comparison choice triggers Type 1 reasoning. If we apply this inference 
to Bancilhon et al.’s lottery game study [4] in Sect. 4.3.1.2, their results are 
consistent with Feldman et al.’s work [20] since the icon array outperforms the 
other visualizations in the decision task. Considering Kale et al.’s fantasy football 
study [36] in Sect. 4.3.1.1, which observed a magnitude estimation task and a 
decision task, it is possible that the selected visualizations have different effects 
under Type 1 and Type 2 reasoning. 

However, our conclusions are solely based on the assumption that the tasks used 
actually elicit two distinct types of reasoning. To further research in this area, we 
need to answer the following research questions, which are core to understanding 
the role of visualization in decision-making: 

• How does the mode of reasoning influence decision-making when using visual-
izations? 

• Can different visualizations elicit different modes of reasoning? 

It is crucial to understand how people make decisions from visualizations. 
Understanding whether a visual encoding facilitates gist or verbatim reasoning 
can have enormous implications for visualization designers. By expanding our 
knowledge in this area, we can tailor visualizations to our audience or a specific 
problem area. Bridging the gap between how psychologists and visualization 
researchers reason about decision-making can revolutionize how we evaluate and 
design visualizations.



98 M. Bancilhon et al.

Such knowledge can have massive implications for visualization designers. For 
example, visualizations can be tailored and personalized to a specific problem area 
or level of audience expertise. Some visualizations are only seen for a short time 
so we need a quick way of displaying information so that people get the gist of it. 
Moreover, some people might be more prone to gisting and others to probabilistic 
reasoning. Factors such as numeracy and spatial ability likely play a role. 

Further investigations are needed to understand how people reason under this 
dual mode and how it affects their decisions. In the following sections, we examine 
cognitive models of decision-making with visualization and advocate for their 
integration into visualization research to deepen our understanding of decision-
making processes with different charts. 

4.5 Cognitive Models of Decision-Making with Visualization 

Cognitive models are an integration of approaches and can be illustrated as process 
diagrams that conceptualize their mechanisms processes. By applying a cognitive 
model to a problem, a visualization researcher can better understand, model, or even 
evaluate the interaction between the user and the visual design at a cognitive level 
of analysis, as opposed to strictly behavioral. Before diving into the integration of 
a dual-process approach into decision-making research with visualization, we must 
first understand how the mind perceives and understands visualization. Pinker [55] 
proposed a cognitive model depicting the distinction between two mechanisms in 
graph comprehension: bottom-up and top-down mechanisms [55]. 

Bottom-up processing is when the mind is directly influenced by a visual 
stimulus which is utilized to construct a visual description. 
Top-down processing is based on the viewer’s goals, experiences, and other 
individual differences. 

Prior knowledge about the graph is then retrieved from long-term memory in 
the form of an established graph schema. It is essential to point out that with 
familiar charts, the visual schema will be retrieved from memory faster and more 
efficiently, facilitating Type 1 reasoning [48]. This match process also occurs when 
visual properties are altered. The viewer then retrieves the graph schema that is the 
most similar to the visual array. When a graph schema is retrieved, the viewer uses 
the information from the graph schema to interpret the visualization. Bottom-up
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attention is influenced by saliency in the visualization design. Features that attract 
bottom-up attention are color, edges, lines, and foreground information. 

Graph schema is memorized graphic conventions [55]. 

When external factors impact knowledge retrieval, the viewer is considered to 
be taking a top-down approach. Top-down attention is based on the viewer’s goals, 
experiences, and other individual differences. There are other factors that can affect 
visualization comprehension, such as the nature of the task. Viewers may need to 
transform their mental representation of the visualization based on their task or 
conceptual questions, and working memory plays are central role in the process 
(Fig. 4.4). 

4.5.1 Padilla’s Dual-Process Model and the Importance 
of Working Memory 

Padilla et al. [48] devised a model that combines theories of visualization compre-
hension, decision-making, and working memory. The motivation for this work is 
the lack of formalization of research from different fields, making it difficult for sci-
entists to integrate cross-domain findings. The authors explored a cognitive model 
of decision-making with visualizations and provide practical recommendations for 
visualization designers. 

In the previous section, we defined two types of graph comprehension mech-
anisms: bottom-up and top-down. The understanding of these two mechanisms is 
crucial in the understanding of Padilla’s Dual-Process Model, with the addition of 
working memory, which are the mental processes associated with effort [48]. 

Padilla et al. [48] assert that working memory plays an important role in decision-
making, but it is often overlooked by visualization researchers as an evaluation 
factor. Before diving into how working memory is involved in the dual reasoning 
system, let’s look at some of its properties. It is important to note that working 
memory capacity is limited [42, 63]. Working memory also increases with task 
difficulty and diminishes over time. Researchers such as Cowan et al. [15] suggest 
that our ability to store information begins to decay after approximately 5–10 
seconds, depending on factors such as the task, type of information, and individual 
differences in working memory capacity. One property of working memory capacity 
that is relevant to dual-process theory is that it limits the amount of attention we can 
allocate to task-relevant information [48]. 

Padilla et al.’s model [48] suggests that when we deliberately employ working 
memory in our decision-making process, we can make slower and more strategic 
but cognitively demanding decisions with visualizations. In other words, working
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Fig. 4.4 An illustrative example of Type 1 versus Type 2 decision as characterized by Padilla et 
al.’s model [48]. (a) An example of a Type 1 decision process in which the viewer is tasked with 
computing the average of the two bars in the graph. A Type 1 approach might make a quick guess 
of the middle point between the two bars. (b) An illustration of a Type 2 decision process. The 
task is the same as subfigure (a) above. In this example, the viewer takes a slower approach and 
estimates the length of each bar. They then compute the average of the two values . 2.4+1.9

2 . Type 2 
activates working memory and can lead to a more effortful but precise estimate if done correctly 

memory is what we use to switch from Type 1 reasoning (requiring nominal working 
memory) to Type 2 (requiring significant working memory). As described in the 
previous section, both Type 1 and Type 2 reasoning can be used to complete the 
decision step. Differences in working memory capacity can influence judgments 
and consequently decision-making. Lohse [41] found that when participants made 
judgments about budget allocation using profit charts, individuals with less working 
memory capacity performed equally well compared to those with more working 
memory capacity when they only made decisions about three regions (easier task). 
However, when participants made judgments about nine regions (harder task),
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individuals with more working memory capacity outperformed those with less 
working memory capacity. Other work finds that participants with low-working 
memory capacity make more accurate resource allocation decisions when using 
density plots and quantile dot plots compared to 95% confidence intervals, point 
estimates, or textual expressions of uncertainty [10]. Furthermore, participants with 
high-working-memory capacity were most accurate with quantile dot plots and 
reported less effort than all other tested methods. This work suggests that 95% 
confidence intervals, point estimates, are textual expressions of uncertainty require 
more working memory than densities and quantile dot plots [10]. The results of 
this study suggest that individual differences in working memory capacity primarily 
influence performance on complex decision-making tasks [10, 41]. 

4.5.2 Outlook on Using Cognitive Models in Visualization 

Padilla et al.’s cognitive model [48] in Sect. 4.5.1 formalizes the implications of 
this dual mode of reasoning for visualization research. This cognitive model is an 
integration of multiple theories and takes a holistic approach to modeling decision-
making with visualization. Applying this model can have a significant impact 
on design and evaluation of visualization interfaces. We provide some practical 
guidance for designers and visualization researchers on how to leverage visual 
features to generate Type 1 or Type 2 reasoning and evaluate visualization designs 
from a dual-process perspective. 

One of the reasons why visualizations are so prominent is because they seem 
effortless. In other words, to design charts that bring about accurate, fast, and 
effortless reasoning, there needs to be a conscious effort to incorporate design 
principles that elicit bottom-up attention on task-relevant information. Padilla’s 
model proposes that bottom-up attention is associated with Type 1 reasoning and 
top-down attention is more likely to generate Type 2 reasoning. Using this principle, 
Padilla et al. allow us to examine core design questions and provide guidelines to 
elicit either reasoning type by altering visual features. 

Modeling visual attention is an important area of research in psychophysics, 
computational modeling, and neurophysiology (see a review of existing work by 
Borji and Itti [7]). When making a choice, the decision-maker must first decode 
the visualization via their visual system [70]. One way to elicit bottom-up attention 
is to align visual features to the users’ existing graph schema. Figure 4.5 shows a 
figure from Padilla et al. where at first glance, it might appear that the introduction 
of the predator species caused a decline in the population of disease X [48]. If 
we look more closely at the graph, we notice that the y-axis is flipped and the 
predator species in fact contributed to the growth of species X. When decoding 
a visualization, we search our long-term memory for knowledge about how to 
interpret the chart and retrieve the graph schema that is the most similar. Altering 
graph conventions can cause errors because the graph schema will no longer match 
the chart. For example, multiple studies find that when the y-axis is inverted people
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Fig. 4.5 Fictional 
relationship between the 
population growth of Species 
X and a predator species, 
where the Y-axis ordering 
does not match standard 
graphic conventions [48] 

consistently come to the wrong interpretation of the chart [52, 72]. These errors are 
likely due to our reliance on graph schema to interpret graphs so much so that we 
do not notice when the schema does not match the chart. 

One of the main design features that can affect decision type is saliency. 
Numerous studies showed that salient information in a visualization draws viewers’ 
attention (e.g., [25, 25, 30, 45, 50, 61, 68]). First, it is important to identify the main 
piece of information that needs to be communicated and then we can direct the 
user’s attention to this information using visual features. There exist behaviorally 
validated saliency models to determine the prominence of different visual encodings 
that will attract viewer’s bottom-up attention, e.g., [28–30]. There is a long history of 
using saliency algorithms in computational imagery. For example, pioneering work 
by Koch and Ullmnan [39] created a saliency map—a two-dimensional topological 
map that encodes conspicuity across the entire scene. The central thesis of their work 
is that salient features within a stimulus “stand out,” thus attracting overt attention. 
There have been some attempts in the visualization community to use this general 
principle to model visual attention in exploratory search tasks [45]. Still, future work 
is needed to model attention in the context of decision-making. 

A critical component of Padilla et al.’s model is the principle that working 
memory is vital for Type 2 processing [48]. It is possible to gain insight into the type 
of decision-making generated by a visualization by measuring the user’s working 
memory capacity. The amount of working memory generated by a task is commonly 
referred to as cognitive load. Remember that Type 1 reasoning does not require 
significant working memory contrarily to Type 2. There exists some prior work 
where the researchers have used measures of working memory to evaluate ease of 
use of visualization. Borgo et al. challenged traditional notions about chart junk 
and showed that embellishments do not generate higher cognitive load compared to 
other visualizations. By using a dual-task paradigm to evaluate different charts, they
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were able to evaluate differences in working memory elicited by different charts 
[6] by observing the dual-task cost. Dual-task cost is described as the decrease in 
performance between single and dual tasks. When the user completes two tasks 
simultaneously, significant memory is required, and by comparing dual-task cost 
across representations, differences in cognitive load can be inferred. There are a 
number of other ways to measure working memory. Castro et al. investigated the 
effect of various uncertainty visualizations on working memory using an operation 
span (OSPAN) task as part of a dual-task paradigm as well as self-reported 
measures [10]. They found that quantile dot plots and density plots are equally 
effective for low-working-memory individuals, while quantile dot plots elicit more 
accurate responses with less perceived effort for high-working-memory individuals. 
Moreover, Peck et al. used fNIRS to evaluate information visualization interfaces 
and found no difference in cognitive load in bar graphs and pie charts [54]. Other 
physical methods include electroencephalogram (EEG) [2] and pupillometry, which 
has shown high levels of correlation with working memory [47]. 

To summarize, two practical ways to elicit decision type are to design according 
to graph schema and saliency. For example, to elicit Type 1 reasoning, some 
elementary steps include verifying that your visualization does not violate any 
graphical conventions and brings forward important information using salient visual 
features. To examine decision type, one can observe working memory through self-
reported measures, behavioral, and psychological methods. Padilla et al.’s model 
[48] is the most updated description of decision-making with visualizations, and 
we advocate that research incorporates this model when evaluating visualization 
design. Although we examined various decision-making models that appear in prior 
literature, they do not describe the entire visualization decision-making process 
using dual-process theory. For example, other models do not account for how 
framing effects of the visual or textual data might influence decisions [46]. Other 
factors such as individual differences (e.g., working memory capacity or spatial 
ability) can mediate the decision process [40, 44, 73] but are not encompassed in 
other models. Numerous researchers have voiced the importance of diversifying 
evaluation measures in the field of visualization [5], which is possible when using 
a cognitive framework. Ultimately, this chapter advocates for measures beyond 
the traditional usability measures, which capture how and why the brain processes 
visualizations. 

4.6 Conclusion 

Adopting decision models can have a significant impact on chart design and 
visualization evaluation. For instance, measuring working memory will diversify 
visualization research by tailoring chart design to individuals with varying levels 
of working memory capacity. Knowledge about dual-process reasoning and insight 
into cognitive load will enable tailoring visualization design to various tasks. 
We assert that for visualization to be reliably effective in real-world decision-
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making settings, research should consider leveraging existing decision theories 
when evaluating visual designs. We reviewed various utility-optimal theories, dual-
process models, and cognitive science frameworks and discussed existing and future 
directions for visualization research. Much of the work discussed in this chapter 
raises valid concerns about evaluation paradigms that emphasize speed and accuracy 
measures. Overall, we advocate for evaluation techniques that go beyond traditional 
usability measures for better theoretical and practical advancements. 
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Chapter 5 
Supporting Diverse Research Methods 
for Observing Huge Variable Space 
in Empirical Studies for Visualization 

Alfie Abdul-Rahman, Min Chen, David H. Laidlaw, and Brian Fisher 

Abstract In each of the last 5 years, a few dozen empirical studies appeared in 
visualization journals and conferences. The existing empirical studies have already 
featured a large number of experimental variables. There are many more variables 
yet to be studied. While empirical studies enable us to obtain knowledge and insight 
about visualization processes through observation and analysis of user experience, 
it seems to be a stupendous challenge for exploring such a huge variable space 
at the current pace. In this chapter, we discuss the implication of not being able 
to explore this space effectively and efficiently and propose means for addressing 
this challenge. In particular, we first reason the need for more empirical studies 
to examine hypotheses about how the “mind” works in visualization and visual 
analytics (VIS) processes. We then outline several progressive approaches to address 
such needs. We argue that an important aspect that the VIS research community 
can learn from psychology is to increase the diversity of publications in studying 
the “mind.” We observe the changing definitions of empirical research papers in 
IEEE VIS conferences over the past two decades, suggesting an existing trend of 
increasing the diversity of publications in the field of VIS. We present some statistics 
about paper types in a number of psychology journals, showing an extensive range 
of empirical research in terms of paper types. Our analysis supports the arguments 
for studying the “mind” in the context of VIS, for providing empirical research in 
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VIS with a diverse range of paper types, and for further developing the synergy 
between VIS and psychology. 

5.1 Introduction 

Many controlled and semi-controlled empirical studies have provided empirical 
evidence to compare and measure effectiveness and efficiency of different visualiza-
tion techniques (or approaches, algorithms, systems, workflows, and so on). Some 
have provided support to existing theories or models for visualization and visual 
analytics, while several have challenged some commonly known assumptions, 
wisdoms, and guidelines. Most of such studies consist of one or a few experiments, 
each features a few independent and dependent variables. One might wish for 
empirical studies to capture all possible independent variables that may be featured 
in commonly used visual representations and all dependent variables that could 
be used to measure the performance of typical visualization tasks. However, the 
sheer number of these variables presents a hindrance to any controlled or semi-
controlled studies. On the other hand, distributing these variables to many studies, 
each focusing on a few variables, demands a large research community and a lot of 
resources. 

Recently, Abdul-Rahman et al. conducted a survey of 32 empirical study papers 
[2] in the field of visualization and visual analytics (VIS). They identified 64 types 
of independent variables and categorized them into five classes. The first four classes 
(56 types) all focused on visual signals, while the fifth class (8 types) focused on 
non-visual variables (e.g., task, teaching method, etc.). They observed that “there 
is no shortage of studies on independent variables in each category,” but “there 
are many more research questions yet to be asked or answered, and the scope of 
visualization-related empirical studies is huge.” They concluded: 

“It may thus be desirable for the visualization researchers who conduct empirical 
studies to be more coherently organized, instead of being distributed sparsely 
in InfoVis, SciVis, VAST, and other areas of visualization. This will allow these 
researchers to share their expertise (e.g., in the review processes) more easily 
and to formulate research agenda in a more ambitious and structured manner.” 
“By providing some opportunities to bring all these researchers together, we may 
soon see the emergence of a new area of visualization psychology.” 

This echoes an earlier observation in another survey [1]: “There are many branches 
of applied psychology ... One has to ask that ‘is there a room for visualization 
psychology?’ ” In this chapter, we provide further discourse on how to address the 
huge variable space in visualization psychology. 

In Sect. 5.2, we present our observation of the traditional focuses of empirical 
research in VIS on hypotheses about the artifacts in visualization images and the 
needs for more empirical studies to examine hypotheses about how the “mind” 
works in VIS processes. In Sect. 5.2.3, we outline several progressive approaches



5 Supporting Diverse Research Methods 111

to address the need for more studies on the “mind.” We argue that an important 
aspect that the VIS research community can learn from the discipline of psychology 
is to increase the diversity of publications in studying the “mind.” 

In Sect. 5.3, we first observe the changing definitions of empirical research papers 
in the IEEE VIS conferences over the past two decades and recognize an existing 
trend of increasing the diversity of publications in the field of VIS. We then present 
some statistics on paper types in a number of psychology journals, showing an 
extensive range of empirical research in terms of paper types. This indicates that 
studying the “mind” is facilitated by a diverse range of research activities, which 
need to be reported and disseminated in publications of a diverse range of paper 
types. 

In Sect. 5.4, we summarize the arguments for studying the “mind” in the context 
of VIS, for providing empirical research in VIS with a diverse range of paper types, 
and for further developing the synergy between VIS and psychology. In addition, we 
propose a set of criteria for evaluating empirical research papers, including artifact-
and mind-focused empirical study papers. 

5.2 Observations 

The main obstacles to the scalability of empirical studies in visualization include (i) 
the relatively small number of visualization researchers who design and conduct 
empirical studies, (ii) the complex variations in visualization in a combinatoric 
manner, and (iii) the narrow hypothesis-based experimental design suitable for 
publication requirements. A new area of visualization psychology may adopt the 
following strategies to help overcome these obstacles. 

5.2.1 More Experimental Scientists 

Building on the references collected by Lam et al. [26], Kijmongkolchai et al. [24], 
Fuchs et al. [15], and Roth et al. [28], Abdul-Rahman et al. surveyed 129 papers 
on visualization-focused empirical studies [1] until 2018. Their statistics show that 
on average the Journal of Psychological Review published about 38 papers per 
year between 1978 and 2018, while the average number of visualization-focused 
empirical studies is about 12 per year between 2010 and 2018. Considering that a 
Wikipedia page [33] lists 144 psychology journals, empirical studies that focus on 
visualization and visual analytics are drops in the ocean. 

The situation is unlikely to improve substantially within the field of visualization 
and visual analytics (VIS) as the overall number of scientists, researchers, and 
practitioners is small, while a large portion of them are busy with other sub-areas, 
such as applications, systems, algorithms, designs, theories, and so on.
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Having Visualization Psychology as an interdisciplinary field and a branch 
of applied psychology can potentially attract many researchers in psychology to 
design and conduct experiments focused on or closely related to visualization. One 
important step to develop the synergy between VIS and psychology is to give an 
adequate emphasis on cognition in VIS research. In other words, there are needs for 
more studies on the “mind.” 

5.2.2 More Studies on the “Mind” 

Most visualization-focused empirical studies examine hypotheses about the arti-
facts in visualization images. For example, Laidlaw et al. compared four techniques 
for visualizing 2D vector fields [25], Chen et al. compared four visual repre-
sentations for depicting motion signatures in videos [8], and Kanjanabose et al. 
compared data tables, scatter plots, and parallel coordinates plots [23]. Sometimes, 
such studies of artifacts (e.g., techniques, plots, visual representations, systems, 
etc.) have led to findings about the mind. In their artifact-based study, Chen et 
al. [8] by chance discovered that participants unconsciously remembered the video 
visualization skills acquired in the first study and performed better 3 months later 
in the second study than those who did not take part in the first study. This is a 
finding about memory and learning—aspects of cognition. Similarly, when studying 
data tables, scatter plots, and parallel coordinates plots, Kanjanabose et al. [23] 
found that participants could retrieve data values more quickly and accurately with 
data tables than with scatter plots and parallel coordinate plots. Since visualization 
was commonly considered as a means for viewing data values and many empirical 
studies compare artifacts with data retrieval tasks, this raises a question: what 
would have happened if data tables had been involved in the comparison, or more 
fundamentally, in what condition visualization is better for data retrieval tasks than 
data tables? 

In recent years, more studies were designed explicitly to study the mind, and 
artifacts were moved to a secondary role as stimuli for observing the mind. There 
have been studies on memory [5], attention [17], visual grouping [16], knowledge 
[24], and so on. Although artifacts were used as stimuli, the experimenters were 
aiming for discoveries about the mind, which can be applied to other artifacts 
that were not examined in the studies. For example, when Szafir found that the 
perception of colors was size-dependent [30], this naturally led to many hypotheses 
that the perception of A might be Y-dependent. Here, A is a placeholder for a set of 
artifacts being studied, while Y is one or a set of cognitive factors. It could also lead 
to a more fundamental hypothesis: must visual encoding be always isomorphic and 
can it be polymorphic [9] since human perception could not hold up the isomorphic 
requirement anyway [30]? If the latter is true, what cognitive factor (or factors) can 
condition polymorphic perception? 

The needs for more studies on the “mind” also reflect the increasing research 
activities in Visual Analytics—a subfield of VIS—developed during the last
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two decades. The research in visual analytics usually focuses on integrated uses 
of machine-centric processes (e.g., statistics and algorithms) and human-centric 
processes (e.g., visualization and interaction) in workflows for data-informed 
decision-making and knowledge acquisition. The goals of decision-making and 
knowledge acquisition naturally place more emphasis on cognition than perception. 
From the perspective of visual analytics, there is an urgent requirement for scaling 
up the empirical research on the “mind” in VIS. 

Meanwhile, the needs for more studies on the “mind” are warranted and entailed 
by the recent developments in the Theoretical Foundation of Visualization. One  
strand of these developments is an information-theoretic measure of the cost-benefit 
of human- and machine-centric processes in visual analytics workflows [10]. It pro-
vides many sound practices in VIS with a mathematical explanation, such as visual 
abstraction [32] and overview-first and detail-on-demand [9, 11]. In particular, it 
does not demonize information loss in VIS processes but recognizes that it is a 
phenomenon common in statistics, algorithms, visualization, and interaction. It also 
postulates that the soft knowledge of humans in the loop can alleviate the negative 
impact of information loss, especially in VIS processes. 

To validate the postulation in [10], Kijmongkolchai et al. designed and conducted 
an empirical study to detect and quantify the human knowledge used in a set of trials 
featuring VIS processes [24]. They successfully detect the significant role of human 
knowledge and found a way to convert the measures of accuracy and response time 
to those of benefit and cost as outlined in [10]. Kijmongkolchai et al. also reported 
some difficulties in dealing with the unbounded nature of the Kullback–Leibler 
divergence, which is part of the original formula in [10]. This prompted further effort 
to improve the original formula by evaluating several bounded divergence measures 
using both conceptual analysis [12] and empirical data [7]. The empirical studies 
for collecting the data involved two types of VIS techniques, volume visualization 
and London underground maps, both of which are known to be useful but feature 
a significant amount of information loss. The collected empirical data were also 
used to exemplify two knowledge measures proposed in [7]. The example shows 
the importance of co-development in theoretical and empirical research in the field 
of VIS. 

Focusing on the mind potentially allows VIS empirical research to make a big 
stride in making fundamental advances in the field of VIS. It is likely that studying 
the mind is harder than studying artifacts. However, any discovery about the mind 
can be translated into inferences about many artifacts. Of course, this is not to 
say that we should not study artifacts. Indeed, as mentioned earlier, findings about 
artifacts can lead to hypotheses and potentially major discoveries about the mind. 
Building on the past studies of artifacts and empirical researchers in VIS, hopefully, 
together with more and more colleagues in psychology, we will be able to conduct 
more studies on the mind.
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5.2.3 Progressive Approaches 

Studying a hypothesis about the mind is entrenched in almost every empirical 
study in psychology. It is also a tradition in psychology that a hypothesis is 
typically investigated in many empirical studies by several teams. It has been rare 
that a hypothesis is confirmed or disproved after the first empirical study on the 
hypothesis. A switching of emphasis from artifacts to the mind may instigate more 
progressive approaches to studying a challenging hypothesis. 

Firstly, empirical researchers in visualization should embrace the tradition of 
psychology in scholarly contention and disagreement and should welcome any 
serious challenge to an existing theory or finding as long as there is an adequate 
empirical evidence or analytical rationale suggesting that the existing theory or 
finding might not be 100% correct as many thought. While it is not easy for 
reviewers to read papers that challenge their past theories or findings, reviewers 
in such situations should exercise a high level of integrity and professionalism, e.g., 
in making an objective assessment, declaring a conflict of interest if appropriate, 
and overcoming the prepossession for suppressing the debate through nitpicking. 

Secondly, empirical researchers in visualization may explore other forms of 
empirical studies that do not involve controlled or semi-controlled experiments. The 
BELIV Workshop (https://beliv-workshop.github.io/) is a biennial event. Since it 
was established in 2006, it has been encouraging empirical researchers to develop 
“new and innovative evaluation methods for visualization tools and techniques.” 
While BELIV has a strong focus on artifacts, findings obtained from the evaluation 
of some visual representations, interaction techniques, and visualization tools can 
also inform the development of new hypotheses, conceptual models, and qualitative 
theories about the mind in the context of visualization. 

Thirdly, visualization scientists are data scientists and are used to process a 
variety of data using data mining and data visualization. Meanwhile, empirical 
studies, controlled as well as uncontrolled, collect data about various variables in 
visualization processes, including the variables about artifacts as well as those about 
the mind. Often such data may not be adequate for confirming a binary hypothesis 
in a statistically significant manner. It may feature too many variables, or some 
variables may have too many values that cannot be clustered into a few groups. 

Nevertheless, if the collected data feature some strong variations in the relation 
between the independent and dependent variables, we can discover such relations 
using visual analytics workflows where statistics, algorithms, visualization, and 
interaction are integrated. We can also use the data to develop data-driven models 
and data-driven metrics. Such a model or metric defines a complex causal relation in 
a probabilistic or functional manner, which is sometimes perceived to be less definite 
than a hypothesis confirmed by an empirical study. In fact, a data-driven model or a 
data-driven metric is just an intermediate step stone toward a grand theory. 

Fourthly, there are two main types of models: data-driven and theory-driven 
models. A data-driven model is typically built directly on the data collected in 
one or a set of empirical studies. In psychology, researchers often propose theories

https://beliv-workshop.github.io/
https://beliv-workshop.github.io/
https://beliv-workshop.github.io/
https://beliv-workshop.github.io/
https://beliv-workshop.github.io/
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based on the findings of empirical studies, usually including their own studies 
as well as those in the literature. Such theories are usually in the form of one 
or a series of causal relations and are treated as hypotheses to be evaluated by 
further empirical studies. A theory may become widely accepted after a sufficient 
number of experiments have evidenced the theory and no credible counter-example 
has been found to falsify the theory. A theory-driven model usually encodes 
the theorized causal relations mathematically or procedurally. We should regard 
developing and evaluating “hypotheses theories” as a progressive approach in 
studying visualization. 

Considering both the third and fourth points, empirical researchers in visual-
ization should welcome and embrace such data-driven and theory-driven models, 
simply because studying a hypothesis about the mind is usually much more complex 
than studying artifacts. Evaluating whether artifact A is better than artifact B may 
need one or a few empirical studies. Determining whether a function of the mind, 
X(), causes A to be better than artifact B will likely require many intermediate steps. 

5.3 The Diversity of Publications in Studying the “Mind” 

The types of publications in a discipline reflect the research scopes, methods, 
historical predilections, and trend movements in the discipline. In this section, we 
first observe the journey of empirical studies in the field of visualization through the 
changing lens of paper types defined for IEEE VIS Conferences. The journey very 
much encapsulates the changes from early artifact-focused empirical research to the 
gradual increase of mind-focused empirical research in the field of visualization and 
visual analytics (VIS). 

In order to anticipate the potential changes that may benefit mind-focused 
VIS empirical research in the future, we provide a short survey of paper types 
in psychology. The diversity of paper types exhibited in psychology publications 
reflects the publication mechanisms needed for supporting mind-focused empirical 
research. This suggests that empirical studies in visualization will enjoy and benefit 
from a broader spectrum of empirical and theoretical research in VIS. 

5.3.1 The Types of Empirical Research Papers in Visualization 

In the field of visualization, the study of human perception and cognition has always 
been encouraged. In 2003, the InfoVis program co-chairs first a categorization 
visualization paper types. The studies of human perception and cognition fall into 
the paper type “Evaluation” [21], which was defined as:



116 A. Abdul-Rahman et al.

. � 1 Evaluation papers are an empirical comparative study of InfoVis techniques 
or systems. The authors are not necessarily expected to implement the systems 
used in these studies themselves; the research contribution will be judged on the 
validity and importance of the experimental results, as opposed to the novelty 
of the systems or techniques under study. The conference committee appreciates 
the difficulty and importance of designing and performing rigorous experiments, 
including the definition of appropriate hypotheses, tasks, datasets, selection of 
subjects, measurement, validation, and conclusions. The goal of such efforts 
should be to move from mere description of experiments toward prediction and 
explanation. We suggest that the potential authors who have not had formal 
training in the design of experiments involving human subjects may wish to 
partner with a colleague from an area such as psychology or human–computer 
interaction who has experience with designing rigorous experimental protocols 
and statistical analysis of the resulting data. 

Munzner detailed the motivation and rationale of the introduction of the five types 
of papers: technique, system, design study, evaluation, and model [27]. IEEE Vis in 
2009 (sometimes referred to as SciVis) adopted the definitions of the five types 
with some minor modifications, such as changing technique to algorithm/technique, 
design study to application/design study, and model to theory/model. In particular, 
in the definition of evaluation papers, phrases “human users” and “empirical study” 
were explicitly mentioned [19]. Later, the definition was also adopted by IEEE 
VAST 2011, after it was transformed from a symposium to a conference in 2010. 

In order to reinforce the purposes of empirical studies being not only for 
evaluating visual designs and visualization systems but also for studying human 
perception and cognition, IEEE VAST 2015 renamed the category of “Evaluation” 
papers as “Empirical Study” papers and offered the following definition [18]: 

. � Empirical Study Papers. In VAST, the goal of empirical studies is typically 
to gain knowledge and insight about aspects of visual analytics (VA) through 
direct and indirect observation and analysis of user experience. They may provide 
empirical evidence to support VA theories or models, compare and measure 
effectiveness and efficiency of a set of VA techniques (or approaches, algorithms, 
systems, workflows, etc.), and collect data for data-driven metrics. An accepted 
empirical study paper may feature one of the following qualities: 

1. Novelty. An empirical study reports new discoveries and findings that have 
not been previously obtained. The study may examine a new phenomenon in 
VA or provide evidence to support or contradict an unconfirmed theoretical 
hypothesis or practical wisdom. 

2. Innovation. An empirical study features new study methodologies that are 
previously unknown to or uncommon in VAST research and are technically

1 We use a symbol . � to indicate that a piece of text is quoted directly from the reference cited just 
before the text in order to avoid overloading the meaning of quotation marks and italic fonts. 
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sound and beneficial in the direct and indirect observation of user experience 
and the collection of empirical data. Such a methodology may become a new 
template for empirical studies in VA. 

3. Significance. An empirical study presents an experiment that may be substan-
tially more comprehensive or lead to more meaningful statistical inference 
than previous studies on the topic. 

4. Impact. An empirical study that may lead to a significant change of our 
fundamental understanding of major VA aspects or result in new guidelines 
and practices in VA. Such impact may have been evidentially confirmed, or 
an initial assessment may have convincingly suggested the potential. 

Following the work of a committee called reVISe for some 2 years, IEEE 
VIS 2021 introduced a new area model for categorizing visualization papers [20]. 
The studies of human perception and cognition fall into “Area 1: Theoretical & 
Empirical,” where the section of “Empirical” is defined as: 

. � Empirical Research aims to contribute research methodologies or concrete 
results of assessments of a visualization/visual analytics contribution or its 
context of use. Topic of interest include: 

• Research Methodology: general methodologies for conducting VIS research, 
e.g., typology, grounded theory, empirical studies, design studies, task analy-
sis, user engagement, qualitative and quantitative research, etc. 

• Empirical Studies: controlled (e.g., typical laboratory experiments), semi-
controlled (e.g., typical crowdsourcing studies), and uncontrolled studies (e.g., 
small group discussions, think aloud exercises, field observation, ethnographic 
studies, etc.), which may be in the forms of qualitative or quantitative research 
and which may be further categorized according to their objectives as follows: 

– Empirical Studies for Evaluation: studies for assessing the effectiveness 
and usability of specific VIS techniques, tools, systems, and workflows, for 
collecting lessons learned from failures, and for establishing the best practice. 

– Empirical Studies for Observation, Data Acquisition, and Hypothesis For-
mulation: studies for observing phenomena in visualization processes, stim-
ulating hypothesis formulation, and collecting data to inform computational 
models and quality metrics. 

– Empirical Studies for Understanding and Theory Validation: studies for 
understanding the human factors in visualization processes, including per-
ceptual factors (e.g., visual and non-visual sensory processes, perception, 
attention, etc.) and cognitive factors (e.g., memory, learning, reasoning, 
decision-making, problem-solving, knowledge, emotion, etc.) 

While the methodologies for empirical research are now formally included in 
the area, the conceptualization and theorization based on empirical research is 
also part of the other section, i.e., “Theoretical” in the same area. In particular, 
one particular subcategory of Theoretical Work is Model Development, which 
is defined as “conceptual models and simulation models for describing aspects of 
visualization processes (e.g., color perception, knowledge acquisition, collaborative
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decision making, etc.).” This is a serious encouragement for formulating qualitative 
and quantitative models based on empirical research. In addition, a number of 
research topics strongly associated with empirical research, such as quality metrics, 
taxonomies and ontologies, also fall into “Area 1: Theoretical & Empirical.” 

The changes during the last decade from Evaluation papers to Empirical 
Studies papers and then to Empirical Research papers in “Area 1: Theoretical 
& Empirical” have enabled the increase of the diversity of publications on human 
perception and cognition in the field of visualization. However, as suggested in 
the short survey in the next section, the studies of the “mind” in the context of 
visualization have yet to be as diverse as those in psychology. 

5.3.2 A Survey of Paper Types in Psychology Journals 

There are many types of papers featured in different psychology journals. According 
to the list at Wikipedia [33], there are nearly 150 psychology journals in 2021. 
In this section, we present a survey of the paper types in eleven psychology 
journals, all of which are well-established journals and have had, or potentially 
will have, strong inference on visualization psychology. We use this survey to 
inform us about the diversity in ways of conducting research, discussing research 
ideas, and disseminating research results. These fourteen journals are as follows (in 
alphabetical order of their abbreviations): 

• The American Journal of Psychology (AJP), University of Illinois Press 
• Annual Review of Psychology (ARP), Annual Reviews 
• Annual Review of Vision Science (ARVS), Annual Reviews 
• Behavioral and Brain Science (BBS), Cambridge University Press 
• British Journal of Psychology (BJP), The British Psychological Society 
• Cognitive Research: Principles and Implications (CRPI), Springer 
• European Journal of Psychology of Education (EJPE), Springer 
• Frontiers in Psychology (FiP), Frontiers 
• International Journal of Psychology (IJP), Wiley 
• Journal of Vision (JoV), Association for Research in Vision and Ophthalmology 
• Perception (Pec), Sage 
• Personality and Social Psychology Review (PSPR), Sage 
• Psychological Reviews (PRe), American Psychological Association 
• Theory & Psychology (TaP), Sage 

Our main selection criteria are: 

1. Ease of identifying paper types—When a journal defines paper types explicitly in 
its guidance to authors and places papers in each issue under specific categories 
of paper types, we can precisely count the number of papers of a specific 
paper type. All selected journals on the above list met this criterion. When
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such information is not available, one would have to categorize each paper 
subjectively, which is both time-consuming and error-prone. 

2. Strong focus on visual perception—Research in the field of visualization and 
visual analytics (VIS) has relied extensively on perception research in psychol-
ogy. These include ARVS, JoV, and Pec in the above list of selected journals. 
For example, Franconeri et al. [13] recently reviewed empirical research findings 
that support guidelines for creating effective and intuitive visualizations for 
disseminative visualization. The review covers many aspects of human vision 
and perception, e.g., ratio perception, color perception, shape perception, visual 
illusions, color blindness, attention, and so on. 

3. Representative of cognition research—The review by Franconeri et al. [13] also  
covers several aspects of cognition, such as working memory, cognitive biases, 
and uncertainty and risk reasoning, suggesting the role of many other cogni-
tive activities (in addition to sensory processing, perception, and attention) in 
visualization processes. As the survey by Abdul-Rahman et al. [1] summarized, 
visualization may feature perceptual and cognitive activities for sensing, storing, 
learning, thinking, motivating, feeling, externalizing, and deviating, and it will 
be beneficial for VIS research to draw knowledge and practices from a broader 
scope of psychology.We therefore intentionally selected a good number of highly 
reputable journals with a strong focus on cognition, which include AJP, ARP, 
BBS, BJP, CRPI, IJP, PRe, and TaP. While many visual representations and 
visualization systems are designed for data analysts and domain experts, some 
are designed for information and knowledge dissemination to the general public. 
We therefore included EJPE and PSPR, which feature empirical research topics 
particularly relevant to the latter. 

4. Paper types relevant but less familiar to the VIS community—Some well-
establish journals, such as BBS, FiP, and PRe in the above list, feature paper types 
that are highly relevant to VIS empirical research but are yet available in VIS 
publication venues. For example, the BBS format of “target article . → open peer 
commentary . → authors’ response” enables scholarly, transparent, and demo-
cratic discourse in research disciplines, where empirical evidence can sometimes 
be conflicting with each other or can often lead to different interpretations and 
conclusions. The mission of PRe, which includes “systematic evaluation of 
alternative theories,” encourages the scholarly review and analysis of competing 
theories and the findings resulting from empirical research. The diverse range of 
paper types in FiP complements the common paper type “research article” and 
encourages exploratory theoretical, conceptual, and methodological research, as 
well as practical applications, system development, and technical innovation. 

Collectively, a wide range of paper types were featured in these journals. 
Table 5.1 summarizes the occurrences of different category names, in alphabetic 
order, in these journals. Each value indicates the number of occurrences of a 
category name (row) in a journal (column) in the period between January 2010 and 
December 2020.
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In addition, there are various small writings for communicating additional, 
supplementary, professional, or organizational information, such as the Addendum, 
Award, Call for papers, Correction, Corrigendum, Editorial, Editorial Acknowl-
edgment, Erratum, Introduction, In memoriam, Obituary, Precis, Preface, and 
Retraction. 

5.3.3 A High-level Categorization 

Figure 5.1 shows two word clouds of the words in the category names listed in 
the leftmost column of Table 5.1. All plural words are converted to their singular 
forms except “notes.” All words are case-insensitive, while all function words are 
excluded. Under these processing conditions, there are a total of 58 words in each 
word cloud. The color and font size of each word encode the frequency of the word. 
When a word appears in multiple category names, the frequency of the word is the 
sum of the frequencies of these category names. 

In Fig. 5.1a, we compute the frequency of a category name by counting the 
number of journals that feature such a category name. For example, according to 
Table 5.1, five journals have the category “book review,” and its frequency is thus 5. 
In Fig. 5.1b, we compute the frequency of a category name by counting the number 
of papers and small writings under such a category in all journals that feature the 

Fig. 5.1 Two word clouds of the words in the category names column of Table 5.1. In (a), the 
frequency of each category name is computed based on counting the number of journals that have 
this category name. In (b), the frequency of each category name is computed by counting the 
number of papers or small writings labeled with this category name. When a word appears in 
multiple category names, the frequency of the word is the sum of the frequencies of these category 
names. The word clouds were created using WordItOut (https://worditout.com/). (a) Based on 
journal occurrences. (b) Based on paper occurrences

https://worditout.com/
https://worditout.com/
https://worditout.com/
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category. Thus, the frequency of “book review” is 534 (.205+141+93+76+19). The 
word “book” appears only once among all category names, and thus its frequency is 
5 in (a) and 534 in (b). On the other hand, the word “review” appears in seven 
category names, and its frequency is the sum of the frequencies of these seven 
category names. It is 20 in (a) and 2784 in (b). 

From Fig. 5.1a, we can observe that words “review” (20 occurrences) and 
“article” (17) occur most frequently. Other words that may draw our attention 
include “research” (11), “commentary” (8), “report” (7), “response” (6), “book” (5), 
“original” (5), and “study” (5). These more frequently occurred words represent 
a diverse range of papers. In addition, two words have 4 occurrences, six words 
have 3 occurrences, seven words have two occurrences, and thirty-five words have 
1 occurrence. 

From Fig. 5.1b, we can observe that the words “research” (16,037 occurrences) 
and “original” (14,839) occur most frequently. The next group of words includes 
“article” (5444), “commentary” (3246), “review” (2794), “open” (2623), and “peer” 
(2623). In addition, eighteen words have occurrences in the 3-digit range of [100, 
999], and twenty-one words in the 2-digit range of [10, 99], and thirteen words in 
the single-digit range of [1, 9]. 

From Table 5.1, We can also observe that the word “book” only occurs in the 
category of “Book review,” while the word “review” is featured in eight category 
names. The words “open” and “peer” only occur in the category of “Open peer 
commentary,” while the word “commentary” is featured in four category names. 
The word “original” only occurs in the category of “Original research,” while the 
word “research” is featured in three different category names. 

Therefore, we can consider that the category features “book,” “open,” “peer,” 
or “original” in its name may likely be part of a super-category. After excluding 
these words for further consideration, the words with high-frequent occurrences in 
Fig. 5.1 are: 

. article, commentary, report, research, response, review, study

It is not so difficult to see a high-level categorization emerging. In this chapter, we 
broadly divide papers and small writings in these eleven journals into the following 
five super-categories. 

• Articles—These are papers considered as the most typical papers in the journal 
concerned. They typically feature original research and are presented in a regular, 
full-length format. We intentionally do not use any word to modify “articles” 
because some commonly used noun adjuncts or adjectives may stimulate narrow-
minded interpretations. For example, 

– Using the word “research” as a noun adjunct might imply other types of papers 
are not research papers. 

– Using the adjective “original” might suggest that papers in other super-
categories do not contain much original research and would not rather unfair 
to many papers in the super-category of Reports.
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– Using the adjective “regular” might exclude papers that are regular in content 
and format, but less regular in submission, review, and editorial processes, 
e.g., special issue and special section papers. 

• Commentaries and Responses—Commentaries are normally small writings 
that offer comments and opinions on a particular topic or a published paper, while 
Responses are the authors’ feedback to the commentaries on specific papers. 
In terms of the categories listed in Table 5.1, this super-category includes all 
category names featuring words such as “commentary,” “response,” “opinion,” 
“debate,” and “forum.” 

• Reviews—From Table 5.1, we can observe several types of reviews. This super-
category simply includes all category names featuring the word “review.” 

• Reports—These are relatively short papers that typically offer brief communica-
tion about a research project or a technical aspect. Journals that cater for papers 
in this super-category normally label them with category names featuring words 
such as “report” and “study,” while avoiding words “article” and “research” 
in order to differentiate them from full-length papers in the super-category of 
Articles. However, it is more fair-minded to consider most, if not all, such 
short papers as research work. We decided not to include the word “studies” in 
naming this super-category because many full-length papers in psychology report 
empirical studies. It would not be appropriate to associate the word “study” with 
only short papers. 

• Others—This super-category includes all other types of small writings that do 
not fall into the super-categories of Commentaries and Responses, Reviews, 
Reports. They are typically for communicating additional, supplementary, 
professional, or organizational information, such as Addendum, Award, Call 
for papers, Correction, Corrigendum, Editorial, Editorial Acknowledgement, 
Erratum, Introduction, In memoriam, Obituary, Precis, Preface, and Retraction. 

5.3.4 Further Categorization of “Articles” 

According to Table 5.1, in six journals (out of eleven), most of their papers fall into 
the category “Article,” i.e., AJP 55%, JoV 83%, Pec 75%, PSPR 77%, PRe 86%, 
and TaP 71%. This is indeed another reason for the super-category Articles to adopt 
the term “article.” Meanwhile, in five other journals, the most common category 
name is “Original Research,” i.e., BJP 50%, CRPI 85%, EJPE 99%, FiP 71%, and 
IJP 46%. 

Publisher Springer, which hosts the journal EJPE, defines the “Original 
Research” papers as follows [29]: 

. � This is the most common type of journal manuscript used to publish full reports 
of data from research. It may be called an Original Article, Research Article, 
Research, or just  Article, depending on the journal. The Original Research format
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is suitable for many different fields and different types of studies. It includes full 
Introduction, Methods, Results, and Discussion sections. 

Most journals in psychology place a strong emphasis on empirical research. For 
example, the American Psychological Association (ASA), which hosts PRe, defines 
“Research articles” as [3]: 

. � Behavior analysis deals with relations between environmental inputs and behav-
ioral outputs using a behavior analytic conceptual framework. Research articles 
present original empirical findings depicting these relations. 
Such articles must provide a compelling rationale for the experimental question, 
employ methods that are appropriate for answering that question, include 
sufficient detail about those methods to allow for replication, present meaningful 
data, analyze those data appropriately, and interpret them meaningfully. 

Some other journals may focus on more theoretical and methodological research. 
For example, TaP defines its scope as [31]: 

. � Theory & Psychology publishes scholarly and expository papers which explore 
significant theoretical developments within and across such specific sub-areas as 
cognitive, social, personality, developmental, clinical, perceptual, or biological 
psychology. 

Many journals are platforms for supporting a diverse range of research work, 
including empirical, theoretical, and methodological research. One such journal is 
FiP, which makes the diversity particularly explicit through its paper types [14]. FiP 
offers nine types of full-length papers, each of which may have up to 12,000 words. 
We have included six categories, namely “Original research,” “Hypothesis and 
theory,” “Clinical trial,” “Method,” “Study protocol,” and “Technology and code,” 
in the super-category Articles, and three other categories of “Review,” “Policy and 
practice review,” and “Systematic review” in the super-category Reviews (see also 
Sect. 5.3.4). 

In addition, there are categories indicating whether a paper is submitted and 
reviewed in a regular process of the journal or a special process, such as in relation 
to a special call for papers. These special processes include “Anniversary article,” 
“Editor’s choice,” “Invited article,” “Special issue paper,” and “Special section 
paper.” 

Among the eleven journals in Table 5.1, only BBS has fewer full-length articles 
(3.3%) than its extensive collection of papers in the “Open peer commentary” 
category (93.3%). This apparent anomaly is because of the unique format of BBS, 
which refers a full-length article as a “Target article” [4]: 

. � A BBS target article can be (i) the report and discussion of empirical research 
that the author judges to have broader scope and implications than might be 
more appropriately reported in a specialty journal, (ii) an unusually significant 
theoretical article that formally models or systematizes a body of research, 
or (iii) a novel interpretation, synthesis, or critique of existing experimental
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or theoretical work. Occasionally, articles dealing with social or philosophical 
aspects of the behavioral and brain sciences will be considered. 

In BBS, each target article is a significant and controversial piece of work and is 
published in the same issue together with 20–40 commentaries from specialists 
within and across the discipline concerned and the author’s response to the 
commentaries. The level of openness and rigor in scholarly discourse is inspirational 
to visualization researchers. We have included the category of “Target article” in 
the super-category Articles, while placing “Open peer commentary” and “Author’s 
response” in the super-category Commentaries and Responses. 

The super-category Articles includes the following categories listed in 
Table 5.1: 

• Anniversary article (AJP) 
• Article (AJP, BJP, IJP, JoV, Pec, PSPR, PRe, TaP) 
• Editor’s choice (BJP) 
• Clinical trial (FiP) 
• Invited article (BJP) 
• Hypothesis and theory (FiP) 
• Method (FiP, JoV) 
• Original research (BJP, CRPI, EJPE, FiP, IJP) 
• Regular article (BJP) 
• Research article (IJP, JoV, PSPR) 
• Special issue paper (BJP, IJP, Pec) 
• Special section paper (IJP) 
• Study protocol (FiP) 
• Target article (BBS, BJP, TaP) 
• Technology and code (FiP) 

5.3.5 Further Categorization of “Commentaries 
and Responses” 

Papers in this super-category are common in the field psychology, encapsulating 
a research culture that embracing openness in discussion, discourse, and debate. 
Difference or disagreement in theoretical understanding and postulation is not 
a barrier in accepting a paper that may contain important postulation, which 
some reviewers do not agree with. Instead, such difference or disagreement is 
“welcomed” and facilitates more papers commonly referred to as Commentaries 
and Responses. 

FiP defines its categories “General Commentary” and “Opinion” as [14]: 

. � General Commentary articles provide critical comments on a previous publi-
cation at Frontiers. The authors wishing to submit commentaries on articles
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published outside of Frontiers are encouraged to reformat and submit them as 
an Opinion type. 

. � Opinion articles allow the authors to contribute viewpoints on the interpretation 
of recent findings in any research area, value of the methods used, as well as 
weaknesses and strengths of scientific hypotheses. 

To complement such commentary and opinion papers, the “Response” category 
provides the authors of articles that receive open critical commentaries with an 
opportunity to respond openly and formally through a short paper. 

Behavioral and Brain Science (BBS) provides a unique and ample platform 
where the authors and commentators engage in open, extensive, and constructive 
interaction on a topic judged to be of broad significance. 

These papers are usually much shorter than the full-length papers. For example, 
FiP limits the length of a paper in the “Opinion” category to 2000 words and that 
in the category of “General commentary” to 1000 words. JoV offers a paper type 
“Perspectives,” which present authors’ personal viewpoints on topics and limits 
the length of each paper in this category to 4 pages. JoV also offers a paper type 
“Point/CounterPoint” that presents two invited articles with opposing views and 
limits the length of each paper to 2–3 pages [22]. 

Some journals use the category name “Letter” for a broad range of small writings 
including commentaries. The American Psychological Association (ASA), which 
hosts PRe, defines letters as [3]: 

. � Letters, which comprise no more than 850 words, provide a means for behavior 
analysts to share potentially important information that would not be appropriate 
for publication in another format. Examples include commentaries on books or 
articles, descriptions of interesting research findings or other observations that 
merit further investigation, and reports of political or legal events likely to affect 
the field. 

The Journal of Vision defines letters as [22] 

. � The journal welcomes submission of Letters to the Editor to be considered for 
publication. Letters may concern material published in the journal or issues of 
general interest to vision scientists. Letters about material published in the jour-
nal may correct errors or offer different points of view, clarification, or additional 
information or analyses in a civil manner. Letters will be evaluated for their 
scientific merit, technical quality, and significance. Letters whose arguments or 
conclusions require support from experimental evidence or theoretical analyses 
are more appropriate as regular submissions and may be declined without review. 
The authors whose article is discussed in a Letter will be given an opportunity to 
reply. 

Our survey of the eleven journals has found the following categories under the 
super-category Commentaries and Responses: 

• Authors’ response (BBS, BJP, JoV) 
• Commentary (BJP, IJP, PRe, TaP)
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• Debate (IJP) 
• Forum (AJP) 
• Frontiers commentary (FiP) 
• General commentary (FiP) 
• Letter (JoV, PRe) 
• Open peer commentary (BBS) 
• Opinion (FiP) 
• Perspective (FiP, JoV) 
• Point/CounterPoint (JoV) 
• Response (BJP, JoV, TaP) 
• Theoretical notes (PRe) 

where the category “Point/CounterPoint” was shown in italics because it is a paper 
type offered by JoV, but our survey has not found any paper with this category name 
in JoV between January 2010 and December 2020. 

5.3.6 Further Categorization of “Reviews” 

Papers in the super-category of Reviews feature extensive discussions on previously 
published research. Among the eleven journals in Table 5.1, nine journals (ARP, 
ARVS, EJPE, FiP, IJP, JoV, Pec, PRe, and TaP) offer a generic category “Review.” 

Publisher Springer, which hosts the journal EJPE, defines the most common type 
of review papers as follows [29]: 

. � Review articles provide a comprehensive summary of research on a certain 
topic and a perspective on the state of the field and where it is heading. They 
are often written by leaders in a particular discipline after invitation from the 
editors of a journal. Reviews are often widely read (for example, by researchers 
looking for a full introduction to a field) and highly cited. Reviews commonly 
cite approximately 100 primary research articles. 

Publisher Annual Reviews hosts 52 journals that focus almost entirely on review 
papers. While the collection covers a broad spectrum of academic disciplines, it 
includes four psychology journals (cf. one for computer science). In addition to 
ARP and ARVS included in our survey, there are also clinical psychology and 
developmental psychology. 

As mentioned earlier in Sect. 5.3.4 in conjunction with the category of “Target 
articles” in BBS, literature review and theoretical discourse and development often 
go hand in hand in the psychology literature. American Psychological Association 
(ASA), which hosts PRe, defines papers in the “Review category” as review and 
conceptual articles and offers the following definition [3]: 

. � Articles in this category summarize previously published research or address 
theoretical or conceptual issues of interest to behavior analysts. Such articles
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support conclusions of potential theoretical, clinical, or practical importance to 
behavior analysts and are written in a clear and comprehensible style. 

The other four journals (AJP, BBS, BJP, and PSPR) also publish review articles 
without an explicit category named as “Review” or alike. Some journals offer 
specific categories of review papers, and these category names are rather self-
explanatory. Together with the generic category of “Review,” the eleven journals 
in Table 5.1 offer the following categories of review papers (in alphabetic order): 

• Book review (AJP, BJP, FiP, Pec, TaP) 
• Emerging trends in vision science (JoV) 
• Essay review (TaP) 
• Focused review (FiP) 
• History of psychology (AJP) 
• Mini review (FiP) 
• Policy and practice review (FiP) 
• Review (ARP, ARVS, CRPI, EJPE, FiP, IJP, JoV, Pec, PRe, TaP) 
• Systematic review (FiP) 
• Tutorial review (CRPI) 

where “Emerging trends in vision science” is a paper type offered by JoV, though 
our survey has not found any paper of this type during the period between January 
2010 and December 2020. 

5.3.7 Further Categorization of “Reports” 

This super-category consists of relatively shorter research papers in comparison with 
the full-length research papers. The definition of short- vs full-length is sensitive to 
the context of individual journals. These papers are often referred to as research 
reports or case studies. 

The American Psychological Association (ASA), which hosts PRe, defines 
research reports as [3]: 

. � Research reports are similar to research articles, but no more than 2500 words 
in length, with no more than two tables or figures. 
Research reports are a convenient venue for reporting findings that are suggestive 
but not compelling, technological devices or applications, follow-up data not 
adequate to support a research article, or any study that can be accurately 
described in few words. 

Publisher Springer, which hosts the journal EJPE, defines short reports and letters 
collectively as [29]: 

. � These papers communicate brief reports of data from original research that 
editors believe will be interesting to many researchers and that will likely 
stimulate further research in the field. As they are relatively short, the format
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is useful for scientists with results that are time sensitive (for example, those 
in highly competitive or quickly changing disciplines). This format often has 
strict length limits, so some experimental details may not be published until 
the authors write a full Original Research manuscript. These papers are also 
sometimes called Brief communications. 

Meanwhile, Springer defines case studies as [29]: 

. � These articles report specific instances of interesting phenomena. A goal of 
Case Studies is to make other researchers aware of the possibility that a specific 
phenomenon might occur. This type of study is often used in medicine to report 
the occurrence of previously unknown or emerging pathologies. 

ASA uses the term “Case conference” and defines it as [3]: 

. � The goal of this type of submission is to provide professionals and students 
with an opportunity to acquire skills in behavioral case conceptualization, behav-
ioral assessment methods, and intervention in the context of service delivery 
(e.g., Behavior Therapy, Clinical Behavior Analysis, Behavioral Medicine, and 
Applied Behavior Analysis). 
A secondary goal is the dissemination of behavior analytic assessment and 
intervention methods to the broader community of readers. To achieve these 
goals, manuscripts describing the use of a controlled case study (A-B design) or 
single-subject research design allowing demonstration of functional relationships 
are appropriate. 

FiP is a publication venue accepting a variety of short papers in addition to full 
papers (maximum 12,000 words). These short papers include [14]: 

• Maximum 8000 words: “Conceptual analysis” 
• Maximum 5000 words: “Community case study,” “Curriculum, instruction, and 

pedagogy” 
• Maximum 4000 words: “Brief research report” 
• Maximum 3000 words: “Case report,” “Data report,” “Mini review,” “Perspec-

tive,” “Policy brief,” “Registered report” 
• Maximum 2000 words: “Specialty grand challenge” 

In addition, FiP has published papers under category names “Clinical case study,” 
“Empirical study,” “Evaluation,” “Protocol,” and “Technology report.” Meanwhile, 
although categories “Case report,” “Curriculum, instruction, and pedagogy,” “Policy 
brief,” and “Registered report” are listed as FiP paper types [14], and no FiP paper 
in our survey period appears to be labeled with any of these category names. 

In particular, “Registered report” is referred to as a Stage 1 paper, outlining a 
proposed methodology and analysis which is pre-registered before data collection 
[14]. Following the In-Principle Acceptance authors have 1 year to collect data and
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submit a complete manuscript for Stage 2 of peer review [14]. “Registered report” 
is also a special paper type offered by BJP, which defines it as [6]: 

. � Registered Reports are a form of empirical article in which the methods 
and proposed analyses are pre-registered and reviewed prior to research being 
conducted. This format is designed to minimize bias in deductive science, while 
also allowing complete flexibility to conduct exploratory (unregistered) analyses 
and report serendipitous findings. 

The following list shows the category names under the super-category Reports, 
including those listed in Table 5.1 as well as those paper types defined by the eleven 
journals. Those defined by the journals but not in the table are listed in italics. 

• Brief research report (CRPI, FiP, IJP) 
• Case conference (PRe) 
• Case report (FiP) 
• Clinical case Study (FiP) 
• Clinical study Protocol (FiP) 
• Community case Study (FiP) 
• Conceptual analysis (FiP) 
• Curriculum, instruction, and pedagogy (FiP) 
• Data report (FiP) 
• Empirical study (FiP) 
• Evaluation (FiP) 
• Policy brief (FiP) 
• Protocol (FiP) 
• Report (EJPE, Pec) 
• Registered report (BJP, FiP) 
• Specialty grand challenge (FiP) 
• Technology (PRe) 
• Technology report (FiP) 

5.3.8 Further Categorization of “Others” 

In addition to the category names listed in Table 5.1, we can find other categories in 
some journals. The names of these categories are mostly self-explanatory. Almost 
all of them are associated with small writings for communicating additional, 
supplementary, professional, or organizational information. They are listed below 
in alphabetic order: 

• Addendum 
• Awards 
• Call for papers 
• Correction (FiP) 
• Corrigendum
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• Editorial (FiP) 
• Editorial Acknowledgement 
• Erratum (FiP) 
• Introduction 
• In Memoriam—a Latin term, meaning “in memory of” 
• Obituary 
• Precis 
• Preface 
• Retraction 

5.3.9 Observations and Discussions 

From the above survey, we can make a number of observations: 

1. Scale and diversity—In terms of the number of papers and the diversity of 
paper types, the current effort of studying the mind in the field visualization is a 
drop in the ocean. While it is necessary to increase the effort within the field of 
visualization, it will be more effective to encourage researchers in psychology to 
investigate research questions about visualization and utilize the well-established 
research expertise and publication platforms in the discipline of psychology. 

2. Theory development and evaluation—Research in psychology is not limited 
to empirical studies. The transformation from studying artifacts to studying 
the mind will require visualization researchers to be more interested in theory 
development and evaluation. While we can be built on a large and diverse 
collection of theories in psychology literature, many of us may have to become 
accustomed to the notion that a theory is a hypothesis. It is necessary to propose 
theories for abstracting and explaining findings of empirical research, while 
empirical research has an important role in testing and questioning existing 
theories as well as suggesting new theories. 

3. Scholarly discussion, discourse, and debate—It is highly desirable to introduce 
new papers in the field of visualization to encourage open and rigorous discus-
sion, discourse, and debate as exemplified by the target articles and open peer 
commentaries in BBS. 

4. Short papers and reports—The field of visualization has conference-based 
platforms for publishing short papers, but no journal-based platform. It is 
desirable to develop journal-based platforms to encourage and sustain a diverse 
range of practical, analytical, and technical research effort that may not result in 
full-length research papers.
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5.4 Conclusions 

In data science, interactive visualization and visual analytics brings together 
machine-centric processes and human-centric processes. It can provide psychol-
ogists with one of the best platforms for studying the human mind. Therefore, 
creating a new interdisciplinary area of visualization psychology will not only 
benefit the research and development in the field of visualization but also benefit 
the scientific agenda in psychology. In particular, the aforementioned fundamental 
questions in visualization are also fundamental questions in perception and cog-
nition. Many currently imperfect guidelines in visualization reflect some limited 
understanding in terms of perception and cognition. Failures or shortcomings in 
the human mind often inspire some best research topics in psychology. Similarly, 
failures or shortcomings of visualization guidelines could inspire some best research 
topics in visualization psychology. 

Meanwhile, many visualization scientists and researchers are highly skilled 
in data analysis and have access to many practical applications. Visualization 
psychology can benefit from such skills and applications in developing new research 
methodologies and delivering high impact applications. 

Having more studies on the mind and having more progressive approaches 
naturally lead to an update of the existing evaluation criteria for artifact-focused 
empirical study papers. An accepted empirical study paper in visualization psychol-
ogy may feature one of the following qualities: 

• Novelty. An empirical study reports new discoveries and findings that have 
not been previously obtained. The study may examine a new phenomenon 
in visualization or provide evidence to support or contradict an unsupported 
theoretical hypothesis or practical wisdom. 

• Innovation. An empirical study features new study methodologies that are pre-
viously unknown to or uncommon in visualization research and are technically 
sound and beneficial in the direct and indirect observation of user experience and 
the collection of empirical data. Such a methodology may become a new template 
for empirical studies in visualization. 

• Significance. An empirical study presents an experiment that is substantially 
more comprehensive, or leads to more meaningful statistical inference, than 
previous studies on the topic. 

• Impact. An empirical study that may lead to a significant change of our 
fundamental understanding about visualization or result in new guidelines and 
practices in visualization. Such an impact may have been evidently confirmed, or 
an initial assessment may have convincingly suggested the potential. 

• Data, Evidence, Measurement, and Analysis. An empirical study reports 
important data samples, evidence, measurement, and analysis that have not 
been previously obtained. The study may contribute toward the discoveries and 
findings of a major, fundamental, and complex hypothesis that is difficult to 
confirm or disapprove through one or a few empirical studies.
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In addition, we need to develop new threads of research work and scholarly 
publications beyond empirical studies, which may include but not limited to 
“Hypothesis and theory,” “Modelling and simulation,” “Method,” “Study protocol,” 
“Technology and code,” “Open peer commentaries,” “Author’s response,” “Brief 
Research Report,” “Case study,” “Data report,” and so on. 
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Part II 
Visualization Psychology 

from a Visualization Perspective 

In developing a book on a new subject discipline called visualization psychology 
(VisPsych), different approaches and perspectives should be drawn from both 
psychology and visualization (a subject residing mainly in computer science) in 
order to present a balanced perspective of this new discipline. Visualization research 
has developed a conscious awareness of the two domains naturally and the almost-
inevitable intersection between them. 

This part explores studies that are drawn largely from the computer science 
domain as opposed to psychology, acting as a complement to the previous part 
that draws largely from the psychology domain. The chapters in this part attempt 
at making foundational links between visualization and psychology, outlining and 
proving, from both theoretical and empirical points of view, the implicit synergy 
of the two disciplines. The chapters encourage readers to develop more formal 
and better structured collaborations across their disciplinary boundaries, fostering 
a virtuous cycle of mutual benefit, which one needs for the progress and further 
development of both. 

In the first chapter of this part, Chap. 6 “Visualization Onboarding Grounded 
in Education Theories,” Christina Stoiber and colleagues present a survey of 
approaches from the academic community as well as from commercial products 
relating to how to support users in learning how to use new digital technologies. 
They emphasize the approach of onboarding, define the concept, and then system-
atically lay out the design space of onboarding in the context of visualization and as 
a conceptual framework using learning theories. 

In the second chapter of this part, Chap. 7 “Adaptive Visualization of Health 
Information Based on Cognitive Psychology: Scenerios, Concepts and Research 
Opportunities,” Tobias Schreck and colleagues discuss how evidence-based medical 
knowledge, cognitive mechanisms, and novel interactive data visualizations can 
potentially be combined to form adaptive and interactive consumer health infor-
mation systems that take into account individual health information needs such as 
health literacy. 

In the third chapter of this part, Chap. 8 “Design Cognition in Data Visual-
ization,” Paul Parsons introduces the field of design cognition and its relevance
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to visualization (VisPsych). He highlights two relevant paradigms—the rational 
solving problem and the reflective practice paradigm. Paul then outlines the 
strengths and weaknesses of these in order to reconcile their differences and then 
examines these implications in relation to four data visualization topics (defining, 
automating, modeling, and teaching data visualization design). 

In the fourth chapter of this part, Chap. 9 “Visualization Psychology: Foundations 
for an Interdisciplinary Research program,” Amy Rae Fox and James D. Hollan 
introduce the first ever Visualization Psychology framework. Unique to the chapter 
is the interpretation of the framework as a set of theoretical premises that should 
guide any inquiry concerned with psychological intrinsic dimensions of visualiza-
tion. The chapter offers a unique view on how visualization is a fertile laboratory 
where theories of perception and cognition can thrive and advance. The authors 
provide a strong argument as to why the intersection between visualization and 
psychology is not a new one but rather traces its roots back into the origins of 
human–computer interaction. They suggest that visualization should be situated in 
the much broader context of external representation, semiotic activity, information 
processing, and distributed cognitive systems, rather than being relegated within the 
computer science realm. 

In the fifth chapter of this part, Chap. 10 “Visualization Psychology for Eye 
Tracking Evaluation,” Maurice Koch and colleagues provide further empirical 
evidence of the implicit synergy between Visualization and Psychology already 
highlighted in the previous chapters. The authors’ focus point is this temporal 
hardware, i.e., eye-tracking devices in particular. The chapter provides empirical 
evidences showing the advantages of employing cognitive models when evaluation 
of visualizations is performed through the means of eye-tracking devices. Eye-
tracking technology enables visualization research to deepen its understanding of 
the perceptual and cognitive processes at play when interpreting a visualization. 
Meanwhile, theories and methodologies from psychology and cognitive science can 
benefit the design and evaluation of eye-tracking experiments for visualization. 

The chapters in this part draw from visualization theory and practice to provide 
strong arguments in favor of the intimate and intertwined relation between visualiza-
tion and psychology. Moreover, they push the boundaries of the discussion toward 
an emergent theory that sees a co-dependency of the two disciplines, which are 
capable of influencing each other’s research advancements. 
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Chapter 6 
Visualization Onboarding Grounded 
in Educational Theories 

Christina Stoiber, Markus Wagner, Florian Grassinger, Margit Pohl, 
Holger Stitz, Marc Streit, Benjamin Potzmann, and Wolfgang Aigner 

Abstract The aim of visualization is to support people in dealing with large and 
complex information structures, to make these structures more comprehensible, 
facilitate exploration, and enable knowledge discovery. However, users often have 
problems reading and interpreting data from visualizations, in particular when they 
experience them for the first time. A lack of visualization literacy, i.e., knowledge in 
terms of domain, data, visual encoding, interaction, and also analytical methods can 
be observed. To support users in learning how to use new digital technologies, the 
concept of onboarding has been successfully applied in other domains. However, 
it has not received much attention from the visualization community so far. This 
chapter aims to fill this gap by defining the concept and systematically laying 
out the design space of onboarding in the context of visualization as a descriptive 
design space. On this basis, we present a survey of approaches from the academic 
community as well as from commercial products, especially surveying educational 
theories that inform the onboarding strategies. Additionally, we derived design 
considerations based on previous publications and present some guidelines for the 
design of visualization onboarding concepts. 
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6.1 Introduction 

The term onboarding was originally coined in the context of HR processes to 
support new employees in learning about their tasks that are part of their job within 
a particular company [40]. The aim of this ongoing process is to communicate 
not only formal knowledge about their tasks but also informal knowledge about 
organizational culture and its unwritten rules, to the new employees. This concept 
has been transferred to other domains such as human–computer interaction (HCI) [6, 
8, 10, 18, 22, 38, 50]. More recently, the focus of onboarding has shifted toward 
mobile applications. Hulik1 introduced the concept of supporting users in learning 
smartphone applications and software tools. Kumar defined user onboarding as 
“the process of increasing the likelihood that new users become successful when 
adopting your product” [42]. 

We think that it is also useful to conceptualize the process of learning about 
complex visualizations that cannot be understood at a first glance by having 
visualization onboarding concepts. We define visualization onboarding as follows: 
“Visualization onboarding is the process of supporting users in reading, inter-
preting, and extracting information from visual representations of data.” [67]. 
This learning process often takes place immediately before or while users work 
with the visualization and is highly task-oriented. In this context, theories about 
learning play an important role. In the visualization community, a considerable 
amount of research has addressed the question of how to increase visualization 
literacy (see, e.g., [31, 57]). This research is generally based on educational theories 
from psychology, especially on constructivist research. The basic assumption is 
that knowledge about visualizations can best be acquired by creating one’s own 
visualization and actively generating one’s own view about this topic. Similarly, 
educational theories can also be adopted to explain the usefulness of onboarding 
approaches. 

In the literature, several different possibilities of how to realize onboarding have 
been suggested (see Table 6.1). Some of them are primarily based on cognitivist 
approaches (e.g., tutorials) [43, 49] and Gestalt psychology (using analogy as a 
learning principle [58]). The educational theory on which these solutions are based 
is sometimes reflected explicitly and sometimes not. The discussion of this topic 
could help to clarify which approaches in the design of onboarding systems are 
more helpful than others. Informal evidence indicates that tutorials are often not 
read, and users just proceed and start working and exploring features of the system 
themselves. Nevertheless, commercial systems often rely on tutorials as well as help 
websites as onboarding systems, e.g., [1, 32, 47, 69]. 

We present a descriptive design space, presented in Fig. 6.2, covering aspects 
of visualization onboarding especially with the focus on educational theories. We 
conduct a systematic literature review to identify the state of the art in visualiza-

1 https://useronboard.com, accessed: 2021-04-30. 

https://useronboard.com
https://useronboard.com
https://useronboard.com
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Table 6.1 Overview of available visualization onboarding approaches (rows), systematically 
characterized along the aspects of our conceptual framework (columns). The table is divided into 
academic research and concepts (upper half) and commercial tools (lower half) which make use 
of various onboarding concepts. With a main focus on the questions, we took four of them and 
mapped them to the categorization of available approaches. The colors refer to the equivalent 
questions explained in the subsections of 3 —applicable —not applicable, and n.a.— 
not available/unknown 

tion onboarding and to categorize the work by summarizing existing onboarding 
concepts in scientific publications and commercial visualization tools using the 
Five W’s and How [24, 25]. WHY is visualization onboarding needed? WHAT 
is visualization onboarding? WHO is the user? Which knowledge gap does the 
user have? HOW is visualization onboarding provided? WHERE is visualization 
onboarding provided? WHEN is visualization onboarding used? Additionally, we 
derived design considerations based on the collected publications and provide some 
existing guidelines for the application of educational theories for visualization 
onboarding in Sect. 6.4.4. Overall, we can report that whether other approaches are
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better for onboarding or it is still not an open question. Empirical research based on 
educational theories could help to gain more systematic information about this area. 

6.2 Related Work 

As visualization onboarding aims at filling the knowledge gaps of users by 
supporting the learning of new concepts, it makes sense to build upon knowledge 
from the fields of learning theories and cognitive science (see Fig. 6.1). Therefore, 
we present the related work for visualization onboarding, educational theories in 
visualization and cognitive science, as well as how explicit knowledge relates to 
onboarding in the following subsections. 

6.2.1 Visualization Onboarding 

So far, there has been little discussion about onboarding concepts for visualization 
techniques and visual analytics (VA) tools. Tanahashi et al. [70] investigated top-
down and bottom-up teaching methods as well as active or passive learning types. 
The bottom-up teaching method is a method focusing on small, detailed pieces 
of information on which students then incorporate together for comprehensive 
understanding. A top-down teaching method is given when a broad overview 
helps to understand the abstract, high-level parts of an idea which then provide 
context for understanding its components in detail [70]. Passive learning means 
that students only receive the information without participatory dialog. In contrast, 
active learning describes an active participation [70]. Their analysis indicates that 
top-down exercises were more effective than bottom-up and active learning types 
with top-down tasks were the most effective ones. In their comparative study, Kwon 
and Lee [43] explored the effectiveness of active learning strategies. Three tutorial 

visualization 
onboarding 

explicit 
knowledge 

educational 
theory 

Fig. 6.1 Visualization onboarding aims to support end users in comprehending data visualizations 
and take full advantage of the tools at hand. With effectively designed onboarding methods, the 
knowledge gap of users could be filled. Thus, it makes sense to tap in the field of educational 
theories as well as identify how onboarding can benefit from explicit knowledge
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types—static, video-based, and interactive—were used to support the learning of 
scatterplot visualizations. They observed that participants who used interactive and 
video tutorials outperformed participants who used static or no tutorials at all. In 
a study which set out to determine the power of teaching unfamiliar visualization 
by linking it to a more familiar one, Ruchikachorn and Mueller [58] found that 
the learning-by-analogy concept can be useful when the visualization method to 
be learned is inherently more powerful than its counterpart. They assessed four 
combinations and compared their difference in visual literacy: scatter plot matrix 
against hyperbox, linear chart against spiral chart, hierarchical pie chart against 
treemap, and data table against parallel coordinates. The spiral charts seemed to be 
the most difficult one to understand for the participants. The authors describe also 
another advantage of learning-by-analogy over other forms of demonstrations such 
as textual or oral descriptions is the power of visuals, as they bridge any language 
barriers. The educational community has also studied how students interpret and 
generate data visualizations [5] and how to teach bar charts in early grades [3] using  
a tablet app, called “C’est la vis,” supporting elementary school pupils to learn how 
to interpret bar charts based on the concreteness fading approach. Concreteness 
fading is a pedagogical method where new concepts are presented with concrete 
examples at first, before progressively abstracting them. Recently, Bishop et al. [9] 
developed a tablet-based tool called Construct-A-Vis, which supports elementary 
school children in creating visualization based on free-form activities. They used 
scaffolding as a pedagogical method. In detail, they integrated feedback mechanisms 
by showing if the visual mapping was correct. Additionally, Bishop et al. [19] 
developed an interactive pedagogical method for training and cognition of a treemap 
design, as well as a treemap literacy test. The user study showed that students who 
interacted with the teaching tool outperformed those students who learned through 
slides. 

Besides, there are platforms and websites available. For example, The graphic 
continuum [68], which provides an overview and helps choose the appropriate 
design or visualization type. Additionally, the Data Viz Catalog [55], a library 
of different visualization types, seeks to help users understand the encoding 
and building blocks of different visualization types. Furthermore, a decision tree 
provided by From Data to Viz [28] helps to find an appropriate visualization type 
based on the input data. The catalog offers definitions, variations, and the use of 
each visualization type in addition to potential issues that may arise during use 
and interpretation. These systems are not related to a particular visualization tool, 
neither integrate any educational theories nor provide validations. Recently, Wang 
et al. [77] presented a set of cheat sheets to support visualization literacy around 
visualization techniques inspired by infographics, data comics, and cheat sheets that 
are established onboarding methods in domains such as machine learning. 

Besides scientific literature, onboarding concepts are integrated in commercial 
visualization tools as well. Nowadays most of these commercial visualization tools 
already integrate onboarding concepts focusing on the explanation of features, see 
Table 6.1. Yalçin [79] presented HelpIn, a design of a contextual in situ help system 
to explain features of Keshif [39]. Furthermore, IBM Cognos Analytics [32], for
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example, uses step-by-step tours with tooltips and overlays for onboarding new 
users. A more traditional approach is used by the commercial visualization tool 
Advizor [1], which makes use of textual descriptions to explain the visual mapping 
for visualization techniques. 

6.2.2 Educational Theories in Visualization and Cognitive 
Science 

Visualization onboarding supporting users in learning new concepts [67]; therefore 
it makes sense to build upon the knowledge from the field of learning theories 
and cognitive science. We distinguish between three main educational theories: 
behaviorism, cognitivism, and constructivism [16]. Behaviorism is an educational 
theory that only focuses on objectively observable behaviors and discounts any 
independent activities of the mind [78]. It is based on positive and negative rein-
forcement techniques. Besides, cognitivism is a philosophy of learning, founded on 
the premise that learning can be modeled as a kind of information processing [16]. 
Each of us generates our own “rules” and “mental models,” which we use to 
make sense of our experiences. Learning, therefore, is the process of adjusting our 
mental models to accommodate new experiences. E-learning systems often integrate 
elements from different educational theories. This also applies to most onboarding 
systems. 

Constructivist theories seem to be the one most appropriate for explaining 
learning processes with onboarding systems because they reflect on the application 
of learning in a practical context. The concept of cognitive apprenticeship plays 
an important role in constructivism [15, 63]. Cognitive apprenticeship is a kind of 
guided participation by learners in real processes of knowledge generation. This is 
related to the concept of scaffolding [27] where teachers gradually reduce the level 
of support for the student until the student is able to work autonomously. Cognitive 
apprenticeship and scaffolding can explain processes related to onboarding because 
the goal of the learners is to solve a real task, while the guidance is gradually 
reduced. 

Another theoretical framework relevant for onboarding is graph comprehension, 
a theory that aims to explain how users make sense of graphs. Most of the 
investigations in this context deal with simple, small graphs [52]. Nevertheless, 
the findings from graph comprehension yield interesting results that can inform 
the design of visualizations. This is especially valuable for onboarding systems 
because investigations in this area often address the issue of how to design graphs 
that are appropriate for use in educational contexts. One of the most influential 
models in the context of the theory of graph comprehension describes this activity 
as consisting of three stages [21]. These three stages are (1) reading the data 
(i.e., finding individual data values), (2) reading between the data (i.e., finding 
relationships between the data), and (3) going beyond the data (i.e., interpreting
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the data, developing hypotheses about the data). Educational graphs are supposed to 
support all three stages, but the ultimate goal is to induce learners to “go beyond the 
data,” that is, to reflect on the data and draw conclusions. Shah et al. [66] argue that 
inexperienced users typically concentrate on single data points or single lines in line 
graphs, whereas experts are able to actually interpret patterns in the data. Peeck [51] 
investigated whether it is possible to motivate learners to process graphs more 
comprehensively. In this context, the author successfully tested whether specific 
instructions for the processing of graphs support learning. The author also postulates 
that other measures such as cues to draw the learner’s attention or motivating the 
learner to solve simple tasks by using the graphs are beneficial. Based on this 
approach, it can be recommended that onboarding should especially support “going 
beyond the data” and that instructions and visual cues can help users to better 
understand visualizations. 

A further learning theory relevant for onboarding is Microlearning. Microlearn-
ing as an approach is a reaction to several technical developments. First, mobile 
technologies enable learners to learn flexibly, e.g., on the way to work, while travel-
ing on public transport or while waiting for a physician. In addition, microlearning 
is also relevant for workplace learning and continuing education [64]. Employees 
in companies or other organizations do not need lengthy explanations but focused 
information that is necessary to continue their work. Microlearning has been defined 
as “special moments or episodes of learning while dealing with specific tasks or 
content, and engaging in small but conscious steps.” [30]. Microlearning usually 
encompasses small units of learning that never take longer than 15 min. The 
situation described for Microlearning in the context of workplace learning is similar 
to the situation of users of complex information visualization systems. 

Finally, Gestalt psychology is a theory that might be relevant for the design of 
onboarding systems. It is well known that Gestalt psychology has made important 
contributions in the area of perceptual psychology. It is less well-known that 
Gestalt psychologists also conducted relevant research in the area of reasoning and 
problem solving (see, e.g., [29, 46]). This is especially interesting for the design 
of visualizations as Gestalt psychologists conceptualized problem solving as the 
(sudden) perception of structure in a problem domain. The so-called Aha-moment 
is the moment when pieces fall into place and coherent structure is identified. In 
this context, the usage of analogies plays an important role because the transfer 
of structural knowledge from a well-known domain to an unknown domain is one 
of the learning methods that was suggested by Gestalt psychologists. Analogies 
can also be used to support onboarding in improving the understanding of complex 
visualizations as shown in the concept by Ruchikachorn and Mueller [58]. 

6.2.3 Knowledge Integration for Onboarding 

In this section, we describe how user onboarding can benefit from explicit knowl-
edge sources and contribute to generate new knowledge and insights. Based
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on the previously introduced terminology, we further characterize knowledge in 
Sect. 6.3.2.1, listing all the possible knowledge types which are needed, supporting 
meaningful onboarding. 

In this work, we mainly consider explicit knowledge, i.e., knowledge as the 
source for providing onboarding. Usually, two types of prior knowledge are 
needed by a user to analyze data: operational knowledge (how to interact with 
the information visualization system) and domain knowledge (how to interpret 
the content) [11]. While a focus on usability and a perception- and cognition-
aware design can alleviate the need for operational knowledge, domain knowledge 
cannot be easily replaced [11]. Stoiber et al. [67] further enhanced the levels 
of the users’ prior knowledge for visualization onboarding based on the nested 
model [48] as (1)  domain knowledge (e.g., vocabulary and concepts), (2) data 
knowledge (understanding the particular datatype), (3) visual encoding knowledge 
(understanding the visual mapping), (4) interaction knowledge (for performing tasks 
and understand relations in the data), and (5) analytical knowledge (knowledge 
of different automated data analysis methods)—see Sect. 6.3.2.1 for more details. 
However, Chen et al. [11] as well as Stoiber et al. [67] described the term prior 
knowledge at different granularities, whereby operational knowledge [11] can be 
seen as similar to the combination of visual encoding, interaction, and analytical 
knowledge [67]. 

Thomas and Cook [71] describe that the proper representation of final as well as 
intermediate generated knowledge can be useful to support the analytical discourse. 
By retaining quality and provenance information, it supports the interoperation 
between human and machine components, the collaboration between different users, 
as well as tracing the relations between data and derived knowledge products. 
In 2005, Thomas and Cook [71, p. 35] incorporated prior domain knowledge and 
building knowledge structures as one of the open challenges of the VA agenda. 
This is supported by the central role of knowledge in the VA process model by 
Keim et al. [36, 37] and further process models such as the knowledge generation 
model by Sacha et al. [59] and the visualization model by van Wijk [75]. However, 
these process models do not differentiate between knowledge in the human and 
the machine space. Based on Wang et al. [76] as well as Federico and Wagner 
et al. [17], tacit knowledge is exclusively available to/by human reasoning and 
can be extracted as explicit knowledge to become machine usable in the VA 
environment. Additionally, the integration of explicit knowledge into the VA process 
is formalized in several recent models by Wang et al. [76], Ribarsky et al. [54], as 
well as Federico and Wagner et al. [17]. Beyond the role of knowledge in the VA 
process, only few works discuss the content and structure of explicit knowledge 
on a general level [2, 4, 44, 56, 65, 74]. As visualization onboarding aims to fill 
different knowledge gaps of the user, the former described knowledge generation 
and transformation concepts can be used.
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6.3 Descriptive Design Space 

In our previous work [67], we introduced a descriptive design space for visualization 
onboarding. This work enhances the design space and discusses the role of 
educational theories in the context of onboarding. 

6.3.1 Construction of Design Space 

We structured the design space based on Five W’s and the appended How [24, 25]. 
These questions are frequently used to describe a matter from its most relevant 
angles in technical documentation and communication. Furthermore, the same 
questions have already been employed for structuring the use of visualization for 
healthcare informatics [80] and in a survey on the role of visual analytics in deep 
learning research [26]. We describe the space of visualization onboarding along the 
following questions: WHO is the user? Which knowledge gaps does the user have? 
HOW is visualization onboarding provided? WHERE is visualization onboarding 
provided? WHEN is visualization onboarding used? Inside of each dimension 
(question), we defined several categories which are described in detail in the section 
below. We followed an open coding approach for the survey of onboarding concepts 
where we unified top-down approaches as well as bottom-up categorizations. Where 
available, we used the existing taxonomies or frameworks, which we adapt to the 
specifics of visualization onboarding. 

6.3.2 Design Space Dimensions 

The aim of visualization onboarding is to support human in dealing with large 
and complex information structures, to make them more comprehensible, facilitate 
exploration, and enable knowledge discovery. Nevertheless, the users often have 
problems in reading and interpreting data from visualizations, in particular when 
they experience them for the first time. In this section, we present the design space 
dimensions of visualization onboarding and show its various aspects. 

6.3.2.1 WHO Is the User? 

Users need to understand the process and reasoning that lead to the visual appear-
ance, interactive behavior, and findings. Making this process transparent to the users 
is a central aspect in the design of visual analytics solutions. For conceptualizing 
this aspect, we adapt the nested model by Munzner and colleagues [48] as the  
guiding framework for presenting different levels of knowledge. The nested model
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Who is the user? Which knowledge gap does the user have? 
WHO3 

Domain knowledge 

Data knowledge 

Visual encoding & 
Interaction knowledge 

Analytical knowledge 

The aim of visualization is to support humans in dealing with 
large and complex information structures, to make them more 
comprehensible, facilitate exploration, and enable knowledge 
discovery. But, users often have problems in reading and 
interpreting data from visualizations, in particular when they 
experience them for the first time. 

Why is visualization onboarding needed? 
WHY1 

Visualization onboarding is the process of supporting users on 
how to read, interpret, and extract information of visual re-
presentations of data. 

What is visualization onboarding? 

WHAT2 

context-sensitive 

context-free 

passive 

active 

Context-sensitivity Interaction 

Tool-specific 

reactive 

Educational Theory 
e.g., concretness 
fading, learning-by-
doing, learning-by-
analogy, 
scaffolding,.. 

Yes | No 

How is visualization onboarding provided? 
HOW4 

Type 

n:m 

e.g., textual instructions, video, 

e.g., guided tour, step-by-step 
wizards, help center, 
documentations, tooltips, overlays, 

embedded 

medium 

external 

internal 

Where is visualization onboarding provided? 
WHERE5 

When is visualization onboarding used? 
WHEN6 

before while 

Fig. 6.2 A visual overview of the onboarding design space and of how all six questions “Why, 
What, Who, How, Where, and When” relate to one another. Each question corresponds to one 
paper section as indicated by the numbered tag near each question title 

is a unified approach that splits the design into four levels and combines these 
with appropriate evaluation methods to mitigate threats to validity at each level. 
In order to be able to cover visual analytic approaches and include automated 
data analysis components, we expand the original model by adding analytical 
methods alongside visual encoding/interaction idioms. Analytical knowledge— 
such as different automated data analysis approaches, machine learning methods, 
or statistical methods applied to the data—is necessary to understand complex 
visualization interfaces and data. Figure 6.2 (3) keeps the nesting but shows an 
altered representation of the different levels. The model components represent the 
different levels of knowledge that (a) visualization users need in order to correctly 
interpret (interactive) visualization artifacts and (b) visualization designers have to 
consider when developing onboarding concepts. 

The levels consider the users’ prior knowledge such as domain knowledge, data 
knowledge, knowledge of visual encoding and interaction concepts, and analytical 
knowledge. 
Domain knowledge: A specific domain is a particular field of interest by target 
users of a visualization tool (e.g., medicine, data journalism, bioinformatics). Each 
domain has its own vocabulary for describing the data and problems, workflows, and 
how data can be used to solve a problem. Domain knowledge is also an ensemble of 
concepts, intellectual tools, and informational resources that a user can draw upon 
to put the visualized data into context.
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Data knowledge: Many visualization tools are specific to a particular type of data, 
such as multivariate data, hierarchical data, network data, or time-oriented data. 
Data knowledge refers to the necessary knowledge for understanding the data types 
and structures or statistical properties of the data. In many cases, users need to 
know how to get their data into a specific visualization tool as a first step. This 
relates to a more technical level of knowledge about a particular file format (e.g., 
CSV, JSON) or structure of the data—data format—(e.g., order and data types of 
individual variables). 
Visual encoding knowledge: This type of knowledge is the most obvious one 
in the context of visualization, as it concerns the visual appearance of the data. 
Data elements are mapped to visual marks and channels to form visualizations. 
Understanding this mapping is the basis for being able to correctly interpret the 
visualization. 
Interaction knowledge: Interactivity is crucial for visualization tools. An interac-
tive visualization tool can support the investigation at multiple levels of detail, such 
as either a high-level overview or fully detailed views that show a small data subset 
only [48]. Understanding the interaction concepts used in a visualization tool is 
important for users for an active discourse with the data, i.e., to perform tasks and 
understand connections and relationships in the data. 
Analytical knowledge is defined as the knowledge of different automated data 
analysis methods, for example, clustering (e.g., k-means) or data aggregation (e.g., 
dimensionality reduction). In certain cases, users need to have at least a basic 
understanding of their characteristics in order to choose or parameterize them 
correctly. 

6.3.2.2 HOW Is Visualization Onboarding Provided? 

Onboarding type, medium, context sensitivity, interaction, tool-specific, and educa-
tional theory are relevant aspects of the question of how visualization onboarding is 
provided. The onboarding type captures the used medium. The form of contextual 
aid is extremely important for applications [23]. The help system should be designed 
to guide users by demonstration in the context of their own interface. Chilana et 
al. [12] developed an approach to provide a new framework for integrating crowd-
sourced contextual help into web applications. In their work, they also discussed 
the importance of contextual help and adaptive help systems. Based on these 
results, we also integrate the aspect of context sensitivity into our framework for 
visualization onboarding. Fernquist et al. [18] introduced a set of the most relevant 
aspects for interactive tutorials for a sketching software. Based on their design 
space for sketching software, we adopted the aspect of interactivity. Additionally, 
we integrated the category tool-specific indicating if the onboarding concept is 
connected to a visualization tool or not. Visualization onboarding supports users 
in learning new concepts. Hence, we integrated the category of educational theory. 
Onboarding type and medium: Onboarding can be provided in different types, 
such as guided tours, step-by-step wizards, video-based tutorials, and help centers.
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We derived this terminology from our literature review and Pronovic’s blog article 
about context-sensitive and embedded help formats [13]. A particular type of 
onboarding consists of a medium which can be, e.g., textual instructions, video, 
illustrations/figures, animations, etc. 
Context Sensitivity: Context-sensitive help provides assistance at a specific point 
in the current state of the tool. It is the smallest possible chunk of information the 
user needs to understand at that point. Examples are in-application help centers, 
guided tours, or mouseover popups including instructional material. A type of 
context-sensitive help is embedded help which goes beyond basic information 
and explanations by either detecting the user’s need for help or offering a guided 
tour right on the interface. Examples are tooltips, instructions on the interface, or 
walkthroughs. Context-free help can be called at any state of usage and does not 
relate to the current state of help-seeking. Examples are online documentations and 
help videos. 
Interaction: Interaction is applied within the onboarding process itself. We refer 
to Fernquist [18] for defining the degree of interactivity in onboarding concepts. 
Help systems can be passive if the user only consumes the learning material, such 
as reading an article or viewing a video. If users can try out the concepts, the 
onboarding concept is defined as active. Active tutorials that are aware of the users’ 
interactions and can respond to these are referred to as reactive. 
Educational theory: The aspect of learning and educational theories is crucial 
when it comes to onboarding approaches. A systematic categorization of the 
educational theories was not possible to conduct as there is no taxonomy avail-
able. Therefore, we collect educational theories, which authors described in their 
scientific publications (e.g., concreteness fading [3], learning by analog [58], etc.) 
Tool-specific: The category describes if the onboarding concept is designed for 
a specific visualization tool (tool-specific) or it is decoupled from it (non-tool-
specific). 

6.3.3 WHERE is Visualization Onboarding Provided? 

Based on Fernquist et al. [18] who introduced a set of the most relevant aspects, we 
also adopted the aspect of the integration of onboarding concepts by asking Where is 
visualization onboarding provided?—externally, internally, or as a learning environ-
ment. An onboarding system that is integrated internally into the visualization can 
be more helpful for users because they do not have to jump back and forth between 
two different systems. External sources for onboarding concepts can be defined as 
sources which can be reached independently of the current state of the tool. At the 
tightest level of integration, help systems can be provided internally. It should be 
pointed out, however, that integrating onboarding systems into the visualization or 
visual analytics tools is challenging and requires a considerable effort.
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6.3.4 WHEN Is Visualization Onboarding Used? 

The aspect of WHEN describes the temporal aspect of intended onboarding use 
(see Fig. 6.2 (6)). Onboarding concepts can be integrated before using the actual 
visualization tool (one time or repeated) or called up while the use of a certain tool, 
e.g., when support regarding a particular feature is needed. 

6.4 Survey on Visualization Onboarding 

In this section, we describe the method used for our systematic literature review in 
detail. Furthermore, we present the results of the survey based on our descriptive 
design space. 

6.4.1 Method 

To get a comprehensive overview of existing onboarding concepts, we systemati-
cally surveyed the literature published in the main venues in the fields of information 
visualization, visual analytics, and HCI. In addition to scientific publications, we 
reviewed commercial visual analytic tools based on a recent study about commercial 
systems by Behrisch et al. [7] (see Table 6.1). We focused on the following 
major conferences and journals: IEEE InfoVis, IEEE VAST, EuroVis, Eurographics, 
EuroVA, IEEE TVCG, Information Visualization (IV), ACM CHI, and ACM UIST. 
Due to the fact that the term onboarding is rarely used in the visualization com-
munity, we used the following keywords: data visualization literacy, visualization 
literacy, instructional material, and learning. We scanned the title and abstract for 
the specific keywords. 

We additionally examined papers published as part of various relevant workshops 
on the topic of visualization literacy, especially the IEEE VIS DECISIVE Workshop. 
We took into account both full and short papers. Moreover, we identified the authors 
of the most relevant papers and included further publications by these researchers. 
We scanned through the related work sections of the relevant papers to find more 
literature related to our topic. We were able to identify a total of nine papers 
that focus on onboarding concepts and learning environments for visualization or 
visualization tools [3, 9, 20, 34, 43, 45, 49, 58, 70, 79] as well as ten commercial 
tools that use a variety of onboarding methods and concepts [1, 32, 47, 53, 60– 
62, 69, 72, 73]. 

Every selected publication was categorized by two coders who are co-authors of 
this chapter. After the coding of the nine papers, we discussed the coding criteria 
and matched our coding strategy. In case of conflicting codes, coders discussed the 
reasons for decisions in order to resolve inconsistencies.
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6.4.2 Results 

We reviewed nine scientific publications and ten commercial tools with a special 
focus on onboarding concepts summarized in Table 6.1. In the following sections, 
we discuss and highlight the most relevant factors of onboarding methods we 
discovered. 

6.4.2.1 WHO: Who Is the User? Which Knowledge Gap Does the User 
Have? 

For both the scientific publications and the commercial tools, we recognized 
strong emphasis on visual encoding and interaction knowledge as well as data 
knowledge [1, 3, 9, 34, 43, 45, 47, 49, 53, 58, 60–62, 70, 72, 79]. Interestingly, 
Kwon and Lee [43], Ruchikachorn and Mueller [58], Bishop et al. [9], and the two 
visualization tools IBM Cognos Analytics [32] and TIBCO Spotfire [73] do not target 
data knowledge explicitly, which appears to be surprising as basic data knowledge 
is crucial in order to understand the visual encoding of a visualization. Only two 
publications [3, 43] cover analytical knowledge, while six of ten commercial tools 
provide support in this respect, e.g., classification and regression models [1]. We 
were able to identify a lack of domain knowledge in all tools and the majority of 
scientific publications. Only two publications focus on domain knowledge in their 
onboarding concepts [3, 79]. The publication of Ola and Sedig [49] was an exception 
insofar as we could not identify any of the knowledge gaps. 

6.4.2.2 HOW: How Is Visualization Onboarding Provided? 

In this dimension, we distinguish between five different aspects: onboarding type 
and medium, context sensitivity, interactivity, tool-specific, and educational theory 
(see Sect. 6.3.2.2). In terms of the onboarding type and medium, we found some 
similarities within the collection of publications. However, these have been the 
most difficult to gather, as the publications vary the most in their onboarding 
approaches. In the educational setting [3, 9, 20], the teaching tools use text, 
visual elements, as well as pictograms as medium to educate students. In terms 
of documented onboarding type, Alper et al. [3] introduced a “tool for teaching 
bar charts.” More recently, Firat et al. [20] developed an instructional software 
tool for treemap visualizations, and Bishop et al. [9] introduced a “free-form 
constructive visualization tool.” Besides, Kang et al. [35] as well as Yalçın [79] 
only integrated text in their onboarding approaches on overlays. Kang et al. [35] 
focused their concept on step-by-step overlays, in contrast, Yalcin [79] used for  
his approach overlays including a combination of topic listing, point and learn, 
guided tour, notification, and topic answers. A further similarity is the usage of 
video and/or animation to onboard users. For example, Ola and Sedig [49] as
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well as Ruchikachorn and Mueller [58] developed video tutorials using animated 
visualization sequences [58] (see Fig. 6.3 (3)) and a video [49] to support users 
in learning. In addition, we identified other types such as interactive walkthrough 
tutorials [43] and InfoVis Guides using text plus questions [70]. In general, most 
of the collected onboarding approaches use a combination of different medium and 
onboarding approaches. 

All commercial tools could be systematically categorized only in terms of 
type and media using documentation/explanation websites with screenshots and 
textual descriptions (medium). The majority of tools also use videos as a medium 
to onboard users. SAS JMP [61], IBM Cognos Analytics [32], and SAS Visual 
Analytics [62] integrate step-by-step tutorials or interactive guided tours and 
therefore also rely on visual elements (chart parts to interact with, applicable filters, 
etc.). TIBCO Jaspersoft [72] and Advizor [1] make use of an in-application help 
overlay using text and videos. Additionally, Microsoft Power BI [47], SAS Visual 
Analytics [62], Tableau [69], TIBCO Spotfire [73], and QlikTech QlikView [53] 
provide a combination of books and courses. One special method to highlight is 
the in-application ask questions of Microsoft Power BI [47], which allows the users 
to ask a question related to the dataset they are currently working on. 

Tool-specific: For the scientific publications, we identified three onboarding 
approaches which can be categorized as tool-specific [33, 49, 79]. The remaining 
six are non-tool-specific [3, 9, 20, 43, 58, 70]. We call these onboarding concepts 
learning environments, which are independent of a specific visualization tool and 
can be used in general. 

Context sensitivity refers to the three categories: context-free, context-sensitive, 
and embedded concepts. Seven out of nine papers designed context-free onboarding 
concepts, while only Yalcin [79] and Kang et al. [34] use context-sensitive and 
embedded onboarding methods. On the other hand, three out of ten commercial tools 
integrate context-free onboarding concepts. The other commercial tools integrate 
context-free and context-sensitive methods as they are using documentation web-
sites and also in-application overlays or guided tours. One example is Advizor [1], 
which makes use of context-free and context-sensitive onboarding methods (see 
Fig. 6.3 (2) for the design of the context-sensitive approach). 

A more detailed investigation of the interactivity of the onboarding concepts 
described in publications we found revealed a good balance between the three types 
of interaction. The category interactivity is also connected with the used educational 
theory. Four of the nine onboarding concepts provide reactive onboarding [9, 35, 
43, 79]. For the commercial tools, we observed a strong trend toward passive 
interactivity. Only two tools—SAS JMP and IBM Cognos Analytics [32, 61]—cover 
all three interactivity types. IBM Cognos Analytics, for example, provides videos 
and a website (passive) as well as an interactive guided tour (reactive) to onboard 
users. 

In terms of the integrated educational theories, we could not find any unique use 
of educational theories among the onboarding approaches presented in publications. 
Thus, we identified the following aspects: (1) onboarding approach designed 
without the integration of educational theories [35, 49, 79], and (2) onboard-
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Fig. 6.3 Onboarding approaches: (1) IBM Cognos [32], (2) Alper et al. [3] onboarding method 
based on the concreteness fading educational theory, (3) PowerBI external webpage with instruc-
tional material (screenshots and text) [47], and (4) educational instructional material for treemap 
visualization [20]
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ing approaches grounded in educational theories: (2a) concreteness fading [3], 
(2b) Experiential learning model [43], (2c) top-down and bottom-up [70], (2d) 
learning-by-analogy [58], (2e) scaffolding via visual feedback, learning from shared 
experience [9], and (2f) active learning [20]. In the following, we describe two 
examples in detail showing how visualization onboarding has been applied. 
Example on Experiential Learning Model (2b): one example for a reactive onboard-
ing is from Kwon and  Lee [43], who developed an online learning approach for 
parallel coordinates following the experiential learning model (see Fig. 6.3 (6)). 
The model defines learning as the process in which knowledge is constructed 
via concrete experience and reflection on the experience [41]. Therefore, the 
interactive tutorial page integrates the experiential learning model’s four stages 
(Concrete Experience, Reflective Observation, Abstract Conceptualization, and 
Active Experimentation). The authors implemented the model as follows. For the 
first stage, the Concrete Experience, the people are asked to complete a mission. For 
the Reflection Observation stage, the onboarding approach provides hints to the user 
interactions. Additionally, “the system shows the conceptual goal of the activity at 
a successful completion” [43] (Abstract Conceptualization). For the fourth level— 
Active Experimentation—the learning approach suggests to repeat the activity to 
strengthen the learning. They conducted a comparative evaluation with three tutorial 
types (static, video-based, and interactive tutorial walkthrough). They observed that 
participants using the interactive and video tutorials outperformed participants with 
static or no tutorials. 
Example on Learning-by-Analogy (2d): In addition to onboarding using the expe-
riential learning model [43], Ruchikachorn and Mueller [58] proposed a concept 
for the teaching of unfamiliar visualizations by using the educational theory of 
learning-by-analogy. This is an example of a combination of passive and active 
onboarding system. Based on animated visualization sequences (passive), the users 
were taught a more advanced visualization technique based on an easier one with 
transitions as presented in Fig. 6.3 (3). The user was able to watch the sequences 
which can be categorized as a passive interaction. Additionally, the user was able to 
start and stop animating the morphing (active). 

6.4.2.3 WHERE: Where Is Visualization Onboarding Provided? 

Our survey of existing work and commercial tools showed that the majority of 
onboarding solutions can either be classified as external or internal or a combination 
of both sources. Yalçın [79] and Kang et al. [34] designed an internal onboarding 
concept. All other solutions can be categorized as external onboarding approaches. 
For commercial tools, there is a fairly equal distribution between only external ones 
and those who are external and internal. The majority of commercial tools provide 
external material such as documentation sites with text, images, and videos.
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6.4.2.4 WHEN: When Is Visualization Onboarding Used? 

Onboarding concepts can be integrated at different states of use—before or during. 
Ola and Sedig [49] relied on a before approach, in contrast, Yalçın [79] and Kang et 
al. [34] provide their onboarding while the usage. Other onboarding approaches [3, 
9, 20, 43, 58, 70] can be either used before or while. We detected a clear tendency for 
commercial tools as all of the onboarding concepts can be used before and during 
usage of the particular visualization tool. 

6.4.3 Summary 

Considering the WHO question, we observed a strong tendency toward visual 
encoding and interaction knowledge [3, 9, 20, 34, 43, 58, 70, 79]. Data knowledge 
is also prominent in the literature [3, 20, 34, 70, 79]. However, domain knowl-
edge [3, 79] and analytical knowledge [3, 43] are covered only by two out of 
nine investigated papers. Only Alper et al. [3] are targeting all knowledge gaps. 
Regarding the question of HOW is onboarding provided? we found a variety 
of different onboarding types. This ranges from simple texts instructions [79] 
or videos [49, 58] to interactive visual elements [3, 9, 20, 43] or step-by-step 
guides [34]. Regarding context sensitivity, most of them are using a context-free 
approach [3, 9, 20, 43, 49, 58, 70], with two exceptions that are context-sensitive 
and embedded in the visualization tool [34, 79]. Those two exceptions are also 
internal looking at the WHERE aspect. All others are designed as non-tool-specific 
onboarding approaches, i.e., not directly integrated into a visualization tool which 
are then external. 

In the case of educational theory, however, no general statement can be made 
based on the categorization of the papers, since each paper follows a different 
educational theory. However, we observed similarities regarding the educational 
theories, which are presented in Sect. 6.4.4. In general, most of the collected 
onboarding approaches of the commercial tools are designed to be used before and 
while interacting with a particular visualization tool (WHEN). 

None of the commercial tools address or attempt to explain the domain knowl-
edge of the users. The tools mainly cover only the data knowledge [1, 47, 53, 60–62, 
69, 72] as well as the visual encoding and interaction knowledge [1, 32, 47, 53, 60– 
62, 69, 72, 73]. In general, the tendency to convey analytical knowledge is much 
higher with commercial tools [1, 60–62, 69, 73] than with the scientific papers. 
In relation to tools, the type of onboarding mainly relies on help websites, 
video tutorials, or courses. There are a few exceptions [32, 61, 62] that also 
use visual elements offering more interaction. For context sensitivity, it is about 
evenly distributed among the tools, but there is no single embedded one. Also, the 
interactivity in the tools is mostly passive since the help often is only provided on 
demand. Exceptions to this are the three approaches [32, 61, 62] that offer guides 
or tutorials directly or react to user interaction. Unfortunately, it was not possible
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to identify an educational theory for any of the commercial tools, but this was 
to be expected, since they are established visualization software. The commercial 
tools have a balanced ratio in the question of WHERE. In terms of the WHEN 
question, all the onboarding approaches can be used while or before using the actual 
visualization tool. 

6.4.4 Existing Design Considerations for Visualization 
Onboarding 

In this section, we present existing guidelines derived from the collected papers. We 
focused on the given medium, type of onboarding, as well as the education theory 
used to onboard users. 

• Kwon and Lee [43] developed an interactive guide for parallel coordinates 
plots based on a learning-by-doing approach. They followed the “Experiential 
learning model,” which can be defined as the process in which knowledge is 
constructed via concrete experience and reflection on the experience [41]. The 
presented interactive tutorial walkthrough integrates textual descriptions as well 
as interactive visual elements (see Fig. 6.4 (3)), where, for example, the user can 
click on points in integrated parallel coordinates, whereupon lines are drawn that 
then connect them. 

• In their paper, Ruchikachorn and Mueller [58] developed a teaching concept 
to learn and teach unfamiliar visualizations by linking it to a more familiar 
one. They followed the learning-by-analogy approach. The authors commented 
that their system can be useful when the visualization method to be learned 
is inherently more powerful than its counterpart. Their approach overcomes 
languages barriers as it uses visuals. 

• The results of the conducted study by Tanahashi et al. [70] showed that tutorials 
where users can directly interact with the visualization will influence the com-
prehension positively. They suggest to use active learning type (participating 
actively in a corresponding dialog) with top-down exercises. In detail, this 
means to ask participants to draw more advances, less direct inferences from the 
data. Their study revealed that their approach of text-plus-question introductory 
tutorials is a useful and practical way to onboarding users to information 
visualizations. 

• A recent study shows that there is a successful knowledge transfer to another 
concrete domain when concrete examples were given as opposed to abstract 
ones [14]. Based on these results, Alper et al. [3] developed a tablet app 
teaching elementary school pupils bar charts using the pedagogical method of 
concreteness fading. The tool provides a space with a reference line (x- and 
y-axis) as well as free-form pictograph that represents data in the form of 
illustrative icons which are scattered around. Children can stack the icons on



158 C. Stoiber et al.

Fig. 6.4 Onboarding approaches: (1) Advizor [1], (2) learning-by-analogy developed by Ruchika-
chorn and Mueller [58], and (3) interactive tutorial based on Experiential Learning Model [43]
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top of each other and then watch an animated transition morphing the icons into 
a more abstract representation of a bar chart (see Fig. 6.3 (2)). 

• Bishop et al. [9] developed a free-form construction tool for tablets to engage 
pupils with the creation of visualization, as well as to make the visual mapping of 
data more explicit. Scaffolding was integrated as educational theory. The results 
of their study highlight the advantage of scaffolding within the creation process 
of visualizations through visual feedback, configurability, and shared interaction. 

When we sum up and generalize the results of the empirical studies of the 
papers, as well as the results of the analysis of the design space, we propose the 
following guidelines when it comes to design onboarding methods: (1) explain the 
visual encoding and interaction concepts [3, 9, 43], (2) use interactive onboarding 
approaches, where users can interact with the visualization as well as with the 
instructional material [43, 70], (3) concrete experience and reflection can lead to 
higher understanding [43, 70], and (4) use animations or videos [3, 43, 58] to show  
the data-to-visual mapping. 

6.5 Discussion and Conclusion 

We presented a descriptive design space for visualization onboarding and presented 
design considerations based on the existing empirical studies. The design space 
contains the six aspects: WHY is visualization onboarding needed? WHAT is 
visualization onboarding? WHO is the user? Which knowledge gap does the 
user have? HOW is visualization onboarding provided? WHERE is visualization 
onboarding provided? WHEN is visualization onboarding used? We conducted a 
systematic literature review to develop the presented design space. Additionally, 
we also reviewed commercial visualization tools listed in Table 6.1. We especially 
focused on educational theories as the aspect of learning is important when it 
comes to the design of visualization onboarding (see Table 6.1 and Sect. 6.4.4). 
Ways to effectively support the learning process of users with different knowledge 
gaps can be considered by using educational theories. However, the literature 
lacks educational theories with a special focus on onboarding concepts. We tried 
to identify guidelines based on the existing literature, which we presented in 
Sect. 6.4.4. Nevertheless, existing theories and results of educational research can 
be used to inform the design of onboarding systems. 

Onboarding systems can either be designed like help systems, which implies 
a cognitivist approach, or they might use a scaffolding approach [9], applying 
features such as prompts, tools to structure information, or higher order questions. 
Constructivist theory supports the assumption that especially higher order reasoning 
processes and the ability to make inferences and draw conclusions from the data 
are supported by cognitive apprenticeship or scaffolding in particular. Higherorder 
reasoning is not only the last stage in the model suggested by graph comprehension 
but also the ultimate goal of most visualization systems. Based on the papers,
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educational theories that support active learning and concrete experience are 
appropriate for onboarding. Further research is needed to empirically test these 
observations. 
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Chapter 7 
Adaptive Visualization of Health 
Information Based on Cognitive 
Psychology: Scenarios, Concepts, 
and Research Opportunities 

Tobias Schreck, Dietrich Albert, Michael A. Bedek, Karl Horvath, 
Klaus Jeitler, Bettina Kubicek, Thomas Semlitsch, Lin Shao, 
and Andrea Siebenhofer-Kroitzsch 

Abstract Consumer Health Information Systems (CHISs) are indispensable in 
healthcare. User-centered evidence-based medical information for patients posi-
tively influences therapy success, behavior, and cause–effect comprehension. Also, 
improved health literacy allows patients to accept medical advice and share 
decision-making and improves doctor–patient communication. Today, CHISs exist 
in many different forms. Yet, information is generally provided statically, i.e., the 
same medical content is presented to everyone. However, patients vary regarding 
previous knowledge and information needs and preference of perception of the 
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information, e.g., in textual or visual form. This variation can depend, e.g., on 
gender, age, personality, perception, and cognitive aspects. 
In this conceptual chapter, we envision how research and knowledge from evidence-
based medical knowledge, cognitive-psychological mechanisms, and interactive 
data visualizations can be combined, to form adaptive and interactive consumer 
health information systems (CHISs) that take account of individual health informa-
tion needs and increase health literacy by providing a reliable source of medical 
knowledge. To this end, we detail the scope and contributions of these disci-
plines to novel visual health information systems which can adapt them to the 
information needs and preferences of their consumers. We depict a concept for 
an advanced interactive, adaptive, personalized visual CHIS (named A. +CHIS). 
The concept is based on introducing multidimensional adaptivity in the content, 
visual presentation, level of detail, for example, to the provision of evidence-based 
medical health information, aiming at the consumers’ full understanding of the 
meaning of the provided medical content. We argue that adaptive visual health 
information may provide efficiency increase for the general medical system and 
improved health literacy. While we do not present concrete results, we lay out the 
research opportunities and a possible system architecture to inform and implement 
A. +CHIS in the future. 

7.1 From Static to Adaptive Visual Health Information 
Systems 

Evidence-based medical research shows that health literacy and treatment success 
require that quality-assured medical information is available to the population and 
patients [21]. This is the aim of CHIS and providers, ranging from information 
folders, brochures, to media reports, web-based discussion forums, and information 
portals. Currently, information is presented statically and does not take into account 
that the knowledge, information needs, and health treatment situations (or contexts) 
of consumers differ significantly. Usually, a one-size-fits-all approach is taken to 
provide information, and existing CHISs provide health information unidirection-
ally from the system to users. However, advances in information technology enable 
consumers and patients to view health information on the Internet. In addition, 
consumers can record data related to their own health, e.g., by using consumer 
health trackers. By automatically collecting such data, as well as other forms 
of user preference feedback, and based on approaches of data analysis, we can 
automatically predict specific health interests of users and dynamically adapt health 
information to a particular consumer’s context and requirements. Adaption can be 
made regarding the content and its level of detail, as well as its visual representation, 
e.g., as text, diagrams, interactive data visualizations, etc. Suitable adaption of 
information detail and form of presentation to customers’ requirements, medical 
and visual literacy, and cognitive setting and greatly improve the reception and 
understanding of information [26, 47]. However, existing static CHISs do not fulfill
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these functions. Also, trustworthy health information targeted to the information 
needs of consumers and patients and effective interactive visual representations 
of health information are expected to drastically increase the use and acceptance 
of health information. This, in turn, may substantially improve patient–doctor 
communication and therapy compliance, foster general health literacy, and raise the 
effectiveness of the health system as a whole. 

Hence, we motivate the need for multidimensional adaptive mechanisms for 
CHIS and propose to research techniques for advanced adaptive, human-centered, 
interactive and visual CHIS, or A. +CHIS. Advanced approaches should aim at 
delivering the required information to consumers at a level of detail and using the 
visual representations that best fit the consumer’s specific, individual information 
needs. 

We argue that results from three fields of research can be combined to research 
effective new approaches for adaptive, personalized health information: (1) inter-
active, personalized visualization of (2) evidence-based health information, and (3) 
fostering cognitive processing. In combination, they allow to research how novel 
A. +CHIS can be designed, implemented, and evaluated. It can support to define 
mechanisms to improve medical information processing in different patient and user 
groups. Novel visual interactive techniques that help adapt displayed information 
to suit the user context can be developed. The specific roles of these fields can 
be described as follows. A more detailed discussion of these areas and their 
contribution toward adaptive visual health information will be given in Sect. 7.3 
and following. 

7.1.1 Interactive Data Visualization for Health Data 
Visualization 

In visualization, the goal is to find cognitively useful visual representations of data 
that enable us to understand complex data and make insightful decisions [70, 112]. 
Information visualization techniques are interactive, allowing to select, filter, and 
navigate data to support task-oriented data analysis such as exploration and hypoth-
esis generation, comparisons, pattern searching, and the verification of dependencies 
[116]. Different visualization techniques have been proposed, depending on the type 
of data (e.g., time series, geospatial data, textual, or high-dimensional data), and 
application domains, including medical information. 

The field of Information Visualization can provide concepts and implementations 
of adaptive visualizations of health data, building on evidence-based health infor-
mation and cognitive psychology principles in health information use. Specifically, 
approaches may be developed to determine appropriate interactive visual repre-
sentations of health information automatically. This requires, relying on Cognitive 
Psychology, finding appropriate knowledge structures for the representation of 
information on health, the consumers, and visualization processes. Building on
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this, research can be conducted into mechanisms that automatically decide what 
information, by which level of detail, and visual representation should be displayed 
based on the personal needs of the consumer. This can build on known guidelines 
and user studies on the effectiveness of information visualization displays and 
methods of machine learning and recommender systems to model and learn user 
interest. The latter will allow not only for consumer information according to the 
pull principle (consumer explicitly requests information) but also the push principle 
(further information is recommended). 

7.1.2 Evidence-Based Consumer Health Information as 
Information Basis 

The field of Evidence-based Consumer Health Information covers the study of exist-
ing CHIS, deriving principles, and goals used in traditional (static, non-interactive) 
CHIS, on which we can build on. These principles can inform new approaches, by 
incorporating known working methods, while extending and improving them for 
multidimensional adaptivity. 

Based on existing quality criteria for CHIS, one can define standards for the 
methodological quality of the A. +CHIS to ensure their trustworthiness. A strictly 
evidence-based approach is required to ensure the presented information is of high 
quality [31, 67]. This is clearly necessary in view of the heterogeneity and differing 
levels of evidence presented in the medical literature, let alone the questionable 
quality of information available in the wilds of the Internet. 

7.1.3 Cognitive Psychology Principles for Adaptive Health 
Information 

Cognitive Psychology of adaptive health information systems is a new research 
direction, which can cover cognitive aspects involved when consumers seek and 
process health information. A key role in this research is the study of pre-knowledge, 
motivation, interests, cognitive biases, and expectations that influence the most 
suitable quantity, detail, context, and presentation of information for specific 
consumers. Adaptation mechanisms needed to suit individual consumer profiles can 
be defined. Research into Cognitive Psychology, including such aspects as the iden-
tification of mechanisms of knowledge, motivation, and learning capacity, which 
takes into account that human cognition is vulnerable to many known cognitive 
biases and misconceptions, can inform the mechanisms for novel A. +CHIS. As far as 
health information is concerned, this can result in problems such as over-information 
or over-diagnosis, which should be taken into consideration by these systems.
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The remainder of this chapter is structured as follows: Sect. 7.2 emphasizes the 
importance of a novel A. +CHIS on diabetes type II and describes two scenarios 
on how such an A. +CHIS could provide suitable health information to consumers. 
Sections 7.3 to 7.5 provide a review of the previous work and current research 
challenges in the three abovementioned fields of research, interactive visualization, 
evidence-based health information, and cognitive psychology. Section 7.6 outlines 
a foreseen system architecture, and Sect. 7.7 concludes. 

7.2 Scenario: Adapting Health Information for Diabetes 
Type II 

In the following, we exemplify the need for adaptive visual health information by 
an important disease according to two scenarios. The examples show the different 
needs and phases in the course of a disease and serve as a reference for building 
adaptive health information systems. We select type 2 diabetes mellitus for our use 
case because it is highly relevant to public health, affects a broad section of the 
population, and is hence well suited for the evaluation of the effects of A. +CHIS. 
The type of information required varies greatly and includes general information 
on the disease, information on the use of devices for blood glucose monitoring or 
insulin applications, information on the potential advantages and disadvantages of 
various interventions and expected effect sizes, information on adequate footwear 
for persons at increased risk of amputation, information supporting behavioral 
changes, and specific advice. 

Depending on the specific situation and interest, a lower or higher level of 
information detail is advantageous. Type 2 diabetes mellitus is a chronic disease, 
i.e., affected persons must deal with it over a long period of time. With increasing 
age and disease progression, the patient may require or be interested in different 
information. For example, information on prevention and lifestyle measures may be 
most important at the onset of the disease, while information dealing with secondary 
diseases may gain in importance later on. Furthermore, the disease affects people of 
different social and educational backgrounds and interests, which may affect the 
information they are interested in. 

To be effective, health information must be adapted to suit the current needs 
of individual consumers. But currently, the detail and comprehensibility of health 
information on type 2 diabetes mellitus, whether in paper form or taken from the 
Internet, etc., cannot generally be influenced. Furthermore, it is often difficult for 
consumers to obtain the information they need, when they need it, and in a form 
they can understand. For much information, it is also impossible for patients to 
determine to what extent it is reliable. New A. +CHIS should offer comprehensive 
evidence-based information at varying levels of detail (from general information, 
specific questions, descriptions of the expected clinical effects of interventions, 
explanations of pathophysiological mechanisms to original scientific papers) and
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take into account individual social and educational differences. Thereby, they can 
make major contributions to improving the care of people with type 2 diabetes 
mellitus and improving health literacy. 

The specification of scenarios is a useful domain context to inform the adaptation 
mechanisms of an adaptive CHIS system. In Sect. 7.6, we discuss an architecture 
and possible Machine Learning methods to incorporate scenario specifications. 

7.2.1 Consumer Health Information System Scenario 1 

A person with known type 2 diabetes mellitus goes to the doctor for a routine check-
up. The doctor determines that the patient’s blood glucose has risen since it was 
last checked and is now too high. The doctor recommends intensifying the blood 
glucose-lowering therapy. As a key information need, the questions arise to what 
extent blood glucose should be lowered and what the potential benefits and harms of 
intensified blood glucose reduction are. Based on this scenario, information content 
can be adapted and visually presented like exemplified in the following. 

Detail Level I: Basic Information on Recommended Intensity of Blood Glu-
cose Reduction A. +CHIS will provide information based on recommendations 
published in Austrian Diabetes Association and other international guidelines, i.e., 
the intensity of the blood glucose reduction should, in principle, be determined 
individually for each person, based on defined criteria. Furthermore, A. +CHIS will 
provide a list of the corresponding personal criteria that includes examples for 
better comprehensibility. For example, when considering the criterion of ‘significant 
comorbidities’, intensive glucose lowering is recommended if these comorbidities 
are absent or of low severity. However, if there are numerous or severe comorbidi-
ties, moderate glucose lowering is recommended. A. +CHIS will show examples 
of concomitant diseases (cancer, heart attack, stroke, etc.) which are considered 
relevant to the given consumer. The A. +CHIS relies on consumer profile information 
and explicit/implicit feedback from the consumer to determine what information is 
necessary. Furthermore, the way the information is presented gets adapted, e.g., to 
overview or summary texts, or symbolic representations based on cognitive profiles 
of consumer’s preferences and perceptions, which are also continuously maintained 
by the A. +CHIS. 

Detail Level II: Basic Information on the Benefits and Harms That May 
Result from Intensifying Blood Glucose-Lowering A. +CHIS will explain that 
data from scientific studies show that, e.g., compared to a moderate reduction 
in blood glucose, intensified blood glucose-lowering does not reduce mortality, 
prevents a heart attack in 2 out of 1000 people, prevents a microvascular event 
(e.g., new onset or progression of retinopathy) in 14 out of 1000 people, etc. At 
the same time, the studies show that for every person in whom a microvascular 
complication was prevented by intensification of therapy measures, there are three 
persons in whom severe hypoglycemic events can be expected. The A. +CHIS selects
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a visual representation appropriate to the interest and visual and health literacy of 
the consumer, e.g., using aggregated or disaggregated medical statistics, which may 
involve a diagrammatic representation of probabilities such as Venn diagrams, line 
charts, or symbolic representations. 

Detail Level III: Presentation of the Content of Scientific Studies on the 
Extent of Potential Benefits or Harms of Intensifying Blood Glucose Reduction 
A. +CHIS will provide information on key publications, guidelines, etc. in terms of 
their research questions, content, and methodological quality. The exact research 
question, the inclusion criteria, and the number and characteristics of included 
studies are presented. In addition, a detailed presentation of the results and the 
authors’ conclusions/recommendations is provided. The A. +CHIS chooses, based on 
consumer profiles, appropriate visual representations of documents. For example, 
the text of a document can be reduced or expanded, applying natural language 
processing methods to the recommended level of detail (see Sect. 7.6). It may 
be possible to represent medical content in different textual or visual form, e.g., 
to represent the dependencies of health on medication and behavior as either a 
dependency graph (network), or in textual form, or both. In the systems, consumers 
should be able to interactively mark information that interests them. This feedback is 
used to update the consumer profile database and search for related documents that 
may then be recommended. Based on demand for further information, the system 
could respond by giving additional references in key publications or guidelines that 
are relevant to the topic and corresponding links to the publications. 

In terms of form and visualization and, where reasonably possible, depending on 
specific aspects and characteristics (such as gender and age), the content is presented 
differently for each level of detail. The presentation will also take into account 
findings on the avoidance of cognitive bias. It should ensure that content is evidence-
based. In addition, based on the described information, A. +CHIS should present 
additional information on the significance of hypoglycemic events at differing 
degrees of detail and using different forms of presentation. Likewise, information 
on the possible benefits and harms of therapeutic measures (lifestyle, medication, 
etc.), i.e., information on the question “How should intensification in blood glucose-
lowering take place?”, can be visualized by means of a network of topics and 
the relationships between them. These can then be interactively explored by the 
consumer. 

The A. +CHIS chooses from a spectrum of visualization techniques for the 
information, including standard diagrams and maps, symbolic representations, text 
visualizations like tag clouds, keyword timelines, document landscapes, citation 
graphs, etc. The visualizations are interactive and enable consumers to request 
additional information and indicate interest or disinterest in certain aspects, from 
which the system learns and updates the consumer profiles. 

From a cognitive psychological point of view, each consumer’s information 
processing and integration must be analyzed and optimized, taking into account (a) 
relevant previous knowledge, health literacy, and the user’s profile, including such 
details as age, gender, consumer group (e.g., patient, relative, interested laypersons),
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and information needs, (b) her/his aims and goals associated with information needs, 
and (c) all information on the consumer gained from his/her dynamic interactions 
and provided feedback that has contributed to sustainable non-biased knowledge. 
Optimization is achieved by using the process-oriented formative and summative 
evaluation of multidimensional adaptivity and interactivity. 

7.2.2 Consumer Health Information System Scenario 2 

A person without known diabetes mellitus participates in a routine health exam 
and an elevated blood glucose level is detected. Many questions on diabetes 
mellitus arise for the person, e.g., Do I really have diabetes mellitus? And if 
so, What type of the disease do I have? What consequences will this have for 
my health and professional future? And What can I do to reduce the risk of 
unwanted health consequences? To answer such questions, information on the 
diagnosis and criteria used to establish the diabetes type, the expected prognosis, 
and legal aspects are necessary. In addition, information on possible types of therapy 
(lifestyle, medication), necessary therapy intensity, and any psychological and social 
support is required. The potential benefits and harms of the various interventions 
(comparative effects of different drugs, of blood pressure reduction versus blood 
sugar reduction, etc.) must also be explained. The need for information will depend 
on the person concerned and may depend on the severity of the disease, possible 
concomitant diseases, whether the person is employed or not, gender and age, 
available resources, etc. The A. +CHIS recognizes the information needs and adapts 
the health information presentation in terms of the level of detail of the provided 
information, content, gender aspects, type of visualization or form of presentation, 
to meet specific needs. It will be ensured that the content is evidence-based. A 
key requirement of the A. +CHIS is that the presentation should take into account 
possible cognitive biases of its consumers, which requires tracking appropriately 
defined and maintained consumer profiles over the repeated uses. As an example, if a 
consumer primarily and repeatedly searches for information units about symptoms, 
possible side effects and complications of type 2 diabetes, and its medical treatment, 
which can be interpreted as confirmation bias, A. +CHIS could suggest information 
units about protective behavioral strategies as de-biasing strategy and to increase the 
consumers’ self-efficacy [64]. To this end, cognitive psychology principles of health 
information need to be researched and reflected in the rules the A. +CHIS applies for 
adaptive health information presentation.
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7.3 Visual Health Information and Visual Analytics 
for Healthcare 

According to various studies, existing CHISs lack in readability and suitability [46, 
57, 83, 93, 107, 114, 117]. In our vision, medical information should be visualized 
such as to be understood by consumers and serve their individual information 
needs [18], taking into account evolving information needs and health and visual 
literacy. Medical information comprises heterogeneous data types, e.g., textual 
descriptions of symptoms and treatments, networks of cause–effect relationships, 
time series data to show measurements, and other numeric data quantifying medical 
relationships, including uncertainties. Using indirect and direct human-computer 
interaction approaches, we can enable to infer automatically information consumers 
require. Dynamically updated user profiles can support to retrieve relevant medical 
information from appropriately structured knowledge databases. Based on knowl-
edge on the effectiveness of different information visualization techniques for the 
satisfaction of different user interests and cognitive properties, we can present this 
information in interactive visualizations. The level of detail and visual presentation 
should be automatically tailored to the respective user’s needs. 

To this end, we can rely on information visualization (specifically, scalable 
effective techniques for the display of different types of data), user interaction 
techniques (specifically, graphical user interfaces with direct and indirect interaction 
modalities), and knowledge technologies (specifically, knowledge representation, 
recommender systems, and classification techniques). An A. +CHIS  may rely on  
direct interaction modalities, like question-asking, or selection. It may potentially 
also rely on indirect ones, e.g., interaction log data analysis to predict interest and 
literacy. With this information, it can adapt the visual information display to the 
consumer. 

Existing adaptation and recommender systems often control only one infor-
mation modality (e.g., by recommending different products to consumers) or are 
focused on a single information presentation format (e.g., texts or audio/video files). 
A. +CHIS should simultaneously decide what to present, how to present it, and to 
observe how users interact with presented information. Based on this, we may 
maintain consumer profiles by adapting them to changing information needs over 
time. 

7.3.1 Previous Work 

7.3.1.1 Interactive Data Visualization and Health Data Visualization 

In visualization, the goal is to find cognitively useful visual representations of data 
that enable us to understand complex data and make insightful decisions [70, 112]. 
Information visualization techniques are interactive, allowing to select, filter, and
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navigate data to support task-oriented data analysis such as exploration and hypoth-
esis generation, comparisons, pattern searching, and the verification of dependencies 
[116]. Different visualization techniques have been proposed, depending on the type 
of data (e.g., time series, geospatial data, textual, or high-dimensional data) and 
application domains, including medical information. To date, effective visualization 
techniques have been proposed. For example, the LifeLine system was among 
the first to visually represent patient treatment histories and support interactive 
exploration [80]. Electronic health records enable novel visualization applications 
for patient data [86]. The KAVAGait approach [110] helps doctors inspect complex 
data derived during clinical gait analysis and supports diagnoses and patient 
treatment decisions. In [22, 33, 118], timeline-based visualization techniques are 
used to display patients’ pathways from a clinical point of view, e.g., patient 
flow, summaries of individual periods in treatment, or treatment plans for diabetes 
patients. Also, icon-based and radial layout-based visualizations have been explored 
to visualize multidimensional health record data [19, 24]. An A. +CHIS should rely 
on such visualization approaches as a basis to proactively choose and adapt to the 
specific information needs, including consumers who are not educated information 
or interaction experts. 

7.3.1.2 Visual Abstractions and Visual Literacy 

Understanding advanced data visualizations and visual interactions depends, among 
others, on the visual literacy of a user. Visual literacy can be defined as the ability 
to recognize and understand ideas conveyed through visual representations (visible 
actions, symbols, or images) [1]. Previous work has focused on design choices and 
visual interactions aimed at making exploratory data analysis more comprehensible 
to novice users. In [87], a concept of teaching and learning unfamiliar visualizations 
by analogy was proposed that uses transformative morphing to explain unfamiliar 
visualizations by linking them to more familiar ones. In [20], a design space for 
storytelling with timelines was introduced that characterizes 14 different design 
choices along three dimensions: representation, scale, and layout. 

VisGuides1 is a discussion platform that collects visualization guidelines and 
allows expert discussion on guidelines and respective empirical results. Depending 
on the type of abstraction, cognitive load may occur. As an example, different 
visual abstraction methods for scatter plot diagrams, for example, include density-
based [29, 63], cluster-based [58], and regression-based [92] abstractions, which 
convey different properties of data in scatter plots. Again, these are valuable 
approaches to convey health information, and an A. +CHIS should pro-actively 
choose, adapt, and present these base visualization techniques to adapt to different 
customer information needs and information processing abilities including cognitive 
properties and possible cognitive biases.

1 VisGuides Forum on Visualization Guidelines. https://visguides.org/ (accessed July 11, 2020). 

https://visguides.org/
https://visguides.org/
https://visguides.org/
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7.3.1.3 Adaptive Visualization for General and Medical Data 

An essential aspect of data visualization is enabling insight into data. However, a 
key factor is that not all users have the same knowledge and understanding of visual 
data representations (see also Sect. 7.5.1.1). Two different user characteristics exist: 
long-term user characteristics (e.g., cognitive abilities and expertise) and short-term 
characteristics (e.g., cognitive load and attention). Both should be considered when 
designing information visualizations [105]. To increase the general effectiveness 
of visualizations, they should be adapted to users’ individual visualization needs 
and abilities. Studies based on user characteristics, such as perceptual speed, verbal 
working memory, visual working memory, and user expertise, have been conducted 
to assess the effectiveness of visualization types [105]. A key challenge in adaptation 
is to do it automatically. Indirect interaction modalities like eye tracking can 
potentially be used. In [100], information on users’ eye gaze patterns is used to 
predict user visualization needs. These may help to adapt the visualization to suit 
the identified task. Recent work applies data analysis to low-level user interaction 
signals. For example, in [76], a hidden Markov model is used to derive learning 
interest and predict relevant information items in a visualization developed from 
user interaction data. These are interesting approaches to adapting visualization but 
require careful set-up of user models and tailoring to specific domains. We aim to 
use both codified domain and user knowledge, as well as feedback loops, to develop 
user interest models and apply them to the adaptation of information displays. 

In medical applications, adaptive visualizations may provide considerable ben-
efits by optimizing insight into, e.g., medical histories, patient observations, lab 
results, clinical findings, etc. AdaptiveEHR [51] is a context-based framework that 
uses biomedical knowledge structures (ontologies) and graphical disease models 
to generate a tailored presentation of patient records based on patient information 
needs. In [69], adaptive visual symbols are presented to visualize personal health 
records and to summarize a patient’s medical history with the desired complexity. 
An adaptive A+CHIS could include several health data visualizations as the basis. 
For instance, symbolic representations of medical events [22, 33], fact sheets [103], 
or visual depiction of a hierarchy of diseases [24] could be adapted for individual 
consumers and their needs. Furthermore, other visualization techniques like Sankey 
diagrams, generic network representations, or time-oriented visualizations could be 
used to support quantitative data analysis of medical data [45, 82, 111]. 

7.3.1.4 Knowledge Technologies and Medical Health Information 

Integration of information retrieval systems in the form of a medical question-
answering system [41, 73], or an intelligent chatbot [74, 84], can be valuable for 
adaptive systems. Chatbots [98] engage patients in a conversation about medical 
information needs. Also, question-answering systems can be useful to identify 
similar patients, patterns of diseases, and successful treatments and to provide 
specific answers to questions. Both question-answering systems and chatbots can
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be applied to ontologies to take queries expressed in natural language and return 
answers drawn from available semantic information [4, 59]. 

Knowledge techniques often rely on structured databases, with semantic infor-
mation being associated with a domain, so that it can be processed automatically 
and without human intervention. Ontologies can represent knowledge as a set 
of concepts within a domain and to define relationships between the concepts. 
Different ontologies exist in the medical domain, e.g., the Unified Medical Lan-
guage System,2 the Bioportal Repository of Biomedical Ontologies,3 the Disease 
Ontology,4 or the OLS Repository for Biomedical Ontologies.5 

In [89], an ontology was used to analyze information from online healthcare 
forums. The approach reveals the relationship between patient profiles and health-
related terms extracted from their forum messages. 

The ontology captures such patient profile data as age, gender, ethnicity and 
habits, and health-related information like diseases, side effects, and symptoms. 
In [30], an ontology-based model for diabetic patients is presented to aid doctors 
in diagnostic decision-making. An overview of the application and effectiveness of 
ontologies in e-Health applications is given in [43]. An A. +CHIS can rely on such 
ontologies to adapt the health information presentation, for example, by aggregating 
or expanding the level of detail of presented information to consumer information 
needs. 

7.3.2 Research Challenges 

In the course of a new research project by the co-authors, we aim to develop, 
implement, and evaluate novel A. +CHIS aiming to address the above motivated 
requirements. We specify the following guiding research challenges and questions 
for information visualization for A. +CHIS as follows: 

• How can health information, including dependencies between health, precon-
ditions, treatment, and behavior, be effectively visualized at different levels of 
abstraction, regarding both the information content and presentation form? 

• Which direct and especially indirect feedback mechanisms are effective in 
recognize the evolving medical interest and visual literacy of consumers? 

• How can the profiles of consumers be updated to reflect evolving interest and 
literacy?

2 Unified Medical Language System. https://www.nlm.nih.gov/research/umls/Snomed/ 
snomed_browsers.html (accessed July 11, 2020). 
3 Bioportal Repository of Biomedical Ontologies. https://bioportal.bioontology.org/ (accessed July 
11, 2020). 
4 Disease Ontology. https://disease-ontology.org/ (accessed July 11, 2020). 
5 OLS Repository for Biomedical Ontologies. https://www.ebi.ac.uk/ols/index (accessed July 11, 
2020). 

https://www.nlm.nih.gov/research/umls/Snomed/snomed_browsers.html
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• How can guidelines for effective visualizations be compiled in a knowledge 
database for adaptation of visual information? 

• How can knowledge from different sources (health information, consumer 
profiles, and visualization guidelines) be efficiently compiled into knowledge 
databases with semantic representations? 

7.4 Evidence-Based Health Information and Systems 

CHIS has the task of providing laypersons with a comprehensive overview of 
diseases and thus increasing the health literacy in the population. Research addresses 
the question of what kind of CHISs are currently available internationally, how they 
are structured, how the medical content will be presented to consumers, and how far 
these aspects can contribute to the development of a new advanced, adaptive, and 
interactive consumer health information system (A. +CHIS). 

For the development and testing of adaptive health information systems, real-
life scenarios are required. We focus on diabetes mellitus type 2, as it is very 
relevant to the public health and affects a wide section of the population [54]. 
Hence, A. +CHIS would deliver great benefits in this area. Diabetes mellitus type 
2 is a chronic disease, i.e., affected persons are confronted with it over a long period 
of time [10]. Therefore, the type of information required varies greatly depending 
on the specific situation and interest. With the progression of the disease and age, 
different information is necessary. Evidence-based medical data can be prepared 
with regard to different levels of detail and the individual needs of the users. Then, 
the information can be combined with new visualization concepts and techniques 
as well as with cognitive-psychological research to enable an interactive adaptive 
system to present the right information in the most appropriate form. 

7.4.1 Previous Work 

7.4.1.1 Health Literacy 

One of the cornerstones of patient charters, e.g., the Austrian Patient Charter,6 is 
the right to be informed about one’s own health or illness. This information can 
only contribute to strengthening health literacy and promoting informed decision-
making if it is comprehensive and understandable. 

In the Health Literacy Survey-Europe (HLS-EU) project in 2011, health literacy 
was defined as “people’s knowledge, motivation, and competences to access,

6 Bundesministerium für Soziales, Gesundheit, Pflege und Konsumentenschutz. Patientenrechte. 
https://www.gesundheit.gv.at/gesundheitsleistungen/patientenrechte/inhalt, 2020 (accessed July 
23, 2020). 

https://www.gesundheit.gv.at/gesundheitsleistungen/patientenrechte/inhalt
https://www.gesundheit.gv.at/gesundheitsleistungen/patientenrechte/inhalt
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understand, appraise and apply health information in order to make judgments and 
take decisions in everyday life concerning health care, disease prevention and health 
promotion to maintain or improve quality of life throughout the course of life” [96]. 

The HLS-EU project was conducted among eight European countries (Austria, 
Bulgaria, Germany, Greece, Ireland, the Netherlands, Poland, and Spain), according 
to which the health literacy of the Austrian population is lower than in other Euro-
pean countries. At 56%, the percentage of people with inadequate or problematic 
health literacy is higher than the international average (48%) [95]. Low health 
literacy is associated with poorer health outcomes, higher rates of hospitalization, 
greater use of emergency care, and higher rates of mortality in the elderly [17]. 

“Health competence” among individuals requires the ability to read and under-
stand health information and to be able to interpret it and use it for one’s own good. It 
is well known that health literacy in the elderly, in poorer people, and in those with 
little school education, is lower than in younger, well-educated, and well-situated 
persons [17]. 

7.4.1.2 Consumer Health Information Systems 

Shared decision-making and adequate information on health issues are not only in 
the interest of patients [42, 68] but also a legal requirement.7 CHIS are tools that are 
commonly used to support informed decision-making. 

Patient information is available from many sources, and its purpose is to provide 
patients with a comprehensive picture of their disease. This information should help 
patients understand their symptoms and develop a sense of not only benefits, risks, 
and side effects but also useless or even harmful interventions [88]. Existing CHISs 
aim at patient information and are particularly concerned with: 

• General knowledge of health, diseases, their effects, and their courses 
• Interventions to maintain health (prevention and health promotion) 
• Early detection, diagnosis, treatment, palliation, rehabilitation, and follow-up 

care of diseases and associated medical decisions 
• Care and coping with illness 
• Daily life with an illness8 

Health information can be provided in very different situations, for various 
target groups, and in a wide range of formats. This includes not only written 
information (in printed and digital form) but also audio and video formats and 
apps for mobile phones. Dynamic Internet formats such as interactive decision

7 Bundesministerium für Gesundheit und Frauen. Gesundheitsziele Österreich -
Richtungsweisende Vorschläge für ein gesünderes Österreich (Langfassung). https:// 
gesundheitsziele-oesterreich.at/website2017/wp-content/uploads/2018/08/gz_langfassung_2018. 
pdf, 2017 (accessed July 23, 2020). 
8 Deutsches Netzwerk Evidenzbasierte Medizin e.V. Gute Praxis Gesundheitsinformation. https:// 
www.ebm-netzwerk.de/de/medien/pdf/gpgi_2_20160721.pdf, 2016 (accessed July 23, 2020). 
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aids, which are targeted at a specific decision-making process and often within the 
context of a treatment, are also included. As people differ in terms of their abilities, 
whether they prefer visual or auditory information, and in the health topics that 
interest them, it is essential that health information is individualized. However, 
current CHISs generally present content statically and do not take into account 
that previous knowledge, the need for information, and the individual situation 
of patients can vary. A “one-size-fits-all” approach to providing information is 
followed, and CHISs provide health information unidirectionally, i.e., information 
flows only from the system to users. Furthermore, the patients themselves are 
rarely actively involved in the development process of CHIS. A positive example is 
“Stiftung Gesundheitswissen,” a German non-profit foundation that only prepares 
health information materials once peoples’ needs have been identified.9 It also 
delivers information in several different formats such as in text and graphic form 
and provides multimedia options such as reality and animated films. Furthermore, 
the same health information is presented in a variety of ways in order to spread 
the information as widely as possible. When searching for health information, 
one encounters a variety of web-based or written materials published by different 
organizations and individuals that are of different quality, accuracy, and reliability. 
This in turn poses significant challenges for the user in selecting sources and, in 
particular, in assessing the credibility and trustworthiness of these sources [90]. 
Although the use of online formats is increasing [12], according to a report of 
the situation prior to 2016, doctors were still the most important provider of 
health information. The U.S. National Trends Survey, which has studied changing 
communication trends and practices in cancer care for more than a decade, also 
reported that doctors are still a more reliable source of health information than 
online tools, health authorities, and brochures10 [77]. As far as we know, no 
currently available media channel in the health field uses adaptive and interactive 
CHIS. One should therefore conduct a systematic review to identify the media 
sources that are used to provide medical knowledge to patients and find out whether 
interactive health information tools are yet in use. 

7.4.1.3 Quality of CHIS 

Regardless of whether individuals can understand and interpret information, it 
is essential that available information materials are evidence-based and reliable. 
However, the quality of health information has several dimensions. In addition to 
the correctness of the content, these include the up-to-dateness and completeness of 
content, as well as such aspects as readability, appropriate detail, presentation, and

9 Stiftung Gesundheitswissen. https://www.stiftung-gesundheitswissen.de/ (accessed July 23, 
2020). 
10 Health information national trends survey. https://hints.cancer.gov/about-hints/learn-more-
about-hints.aspx (accessed July 23, 2020). 
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accessibility. Several methodological papers have therefore been written on how to 
develop high-quality health information materials and how to assess existing health 
information [27, 66]. Unfortunately, the content of health information is often driven 
by commercial interests and rarely presents a balanced view. 

In the course of a study in Styria, over 1000 print versions of health information 
materials from general practices have been collected. All information materials 
had considerable shortcomings and did not provide the balanced, comprehensive, 
and comprehensible information that would help patients raise their health literacy 
and make informed decisions [50]. The same picture is true of online health 
information. As shown in a recent systematic review [36] that included 153 cross-
sectional studies, the Internet is not a source of reliable health information for 
non-professionals that have no education in medicine. 

7.4.2 Research Challenges 

Based on the above requirements discussion, we specify the following guid-
ing research challenges and questions for evidence-based health information for 
A. +CHIS as follows: 

• What CHISs are currently available? What are their characteristics and how can 
they inform the development of an A. +CHIS? 

– Which types of CHIS and media are currently used in practice? 
– How are current CHIS structured, and what is their level of information detail? 
– What are the differences between CHISs? What is the range of different 

content, concepts, and other characteristics? 

• How can it be ensured that the contents of the A. +CHIS are trustworthy and 
uncertainties are sufficiently communicated? 

– What instruments and criteria are used to assess the methodological quality 
of current CHIS? What best practice rules can be deduced for adaptive visual 
CHIS? 

– How can advanced, comprehensive, evidence-based CHIS be designed and 
evaluated for type 2 diabetes mellitus? 

– Which approaches can support the filling of health information systems with 
quality-assured evidence-based content? 

7.5 Cognitive Psychology of Health Information 

Adaptive health information systems should reflect the cognitive dimensions of 
health information consumption, underlying knowledge, comprehension, and pro-
cessing. The main objective is to facilitate in-depth processing without cognitive
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biases and misconceptions and the effective and sustainable learning of information 
units by users of A. +CHIS. This should lead to desirable health-related behavior, 
such as improved communication between patients and medical doctors and 
increased compliance. 

To achieve this objective, an approach would be to obtain requirements by user 
requirement analysis, e.g., by semi-structured interviews with patients and relatives. 
Well-established instructional design principles that facilitate comprehension and 
learning processes should hereby avoid the occurrence of cognitive biases and 
misconceptions. The adaptation of presented health information would rely on 
advanced multidimensional adaptive, personalized, and interactive mechanisms, 
including feedback loops (in both directions) between users and the A. +CHIS to 
increase knowledge, motivation, and health-related behaviors in a non-intrusive 
manner. Non-intrusive assessments of previous knowledge, information needs, and 
the motives of users should be carried out. 

Previous work on knowledge representation, non-intrusive assessment, adaptive, 
personalized, and interactive mechanisms, cognitive bias mitigation in visualiza-
tions, and multi-method evaluation approaches will be instrumental to this end. 
Design guidelines and principles aimed at facilitating comprehension and an 
effective and sustainable learning processes on the one hand, and design guidelines 
for mitigating cognitive biases and misconceptions in visualizations on the other, 
have so far been considered to be separate research areas. We may overcome 
this separation by synthesizing these two areas. Existing solutions and research 
into adaptive, personalized, and interactive mechanisms can be combined in an 
innovative way, with the aim of attaining ideal adaptation. This process will also rely 
on summative evaluation studies that compare non-adaptive and different degrees 
and forms of adaptive and interactive A. +CHIS with regard to comprehension and 
effective and sustainable learning processes. 

7.5.1 Previous Work 

7.5.1.1 Knowledge Representation 

Research on knowledge representation in Cognitive Psychology has a long tradition 
(e.g., [56]). Although some overlap exists with computer science (e.g., [79]), with 
both disciplines using the same formats (such as mathematical expressions and 
procedural codes), it is important to differentiate between the two. In this area, we 
will focus on cognitive-psychological approaches (e.g., [5]) which in CHIS have 
to meet the following requirements: (a) be suitable for representing both medical 
and user knowledge, (b) be able to represent knowledge from different perspectives 
because of the multiple, adaptive aims of A. +CHIS, and (c) ensure to visually 
represent medical and user knowledge in a meaningful and transparent way. 

At least the Formal Concept Analysis (FCA), the Knowledge Space Theory 
(KST), and a set of graph-based knowledge representations meet these require-
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ments. The FCA (e.g., [15, 113]) visualizes complex information as concept lattices 
without loss of information. The KST (e.g., [7, 37, 40]) provides a formal basis 
for simultaneously structuring a domain of knowledge and the knowledge of 
individuals that is based on prerequisite relations. Finally, graph-based knowledge 
representations visualize the inherent structure of meanings (e.g., [3, 8, 97, 106]). 

Almost all of these approaches have been successful applied in the provision of 
medical information and in medical education: for instance, for application of FCA 
[81], of KST [6], or by Graph-based knowledge representations such as Concept 
Maps [34], Conceptual Graphs [53], and Mind Maps [2]. The main challenge of 
developing A. +CHIS for domain and user knowledge representation is to research 
how to provide multiple perspectives on the content simultaneously. 

7.5.1.2 Adaptive Assessment 

In view of the huge amount of medical information and the variety of consumer 
needs, a selective presentation will be necessary. User-centered adaptive assess-
ments must guide the selection procedure to suit individual information needs. 
Based on the different formats of knowledge representation, adaptive assessment 
procedures rely on the transitivity of different underlying structures/relations. 
Typical examples refer to (i) difficulty [85], (ii) prerequisites of information units 
[37], (iii) subordinated meanings (hyponymy and hypernymy), (iv) preferences, 
or (v) graphical knowledge representations [101]. In the medical domain, some 
examples of adaptive assessments of knowledge have already been proposed (e.g., 
[48, 60, 78]). 

However, research into multidimensional adaptive assessments is lacking. A 
second challenge is to gradually replace formative multidimensional assessments 
by using non-intrusive, indirect adaptive assessment procedures “in the wild” (i.e., 
self-regulated interactivity, see, for example, [94]). A third challenge is posed by the 
need for an indirect adaptive assessment of users’ needs with regard to the properties 
of the system in order to improve the usage and acceptance of A. +CHIS. 

7.5.1.3 Interactivity 

A. +CHIS is conceptualized for adaptive, interactive, multimodal Human-Computer 
Interaction (HCI). Although they are the two sides of the same coin, we must 
distinguish between HCI in computer science and in psychology. HCI is also a 
topic in psychology for a long time already (see e.g. [25]). Instead of a data-
driven, bottom-up approach, we favor theory-driven top-down approaches for 
analyzing interaction data and supporting the user with respect to Self-Regulated 
Behavior and Learning (SRBL) [72, 119], which is used as general framework 
for modeling the “interactive human behavior in the loops.” Within the SRBL 
framework, more specific approaches focus on (i) Information Seeking and Retrieval 
Processes [91], (ii) Process-Oriented Feedback [55, 71], (iii) Motivation [13], and
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(iv) Microadaptivity [99]. The challenge is to integrate the different approaches for 
supporting the consumer in using A. +CHIS interactively for reaching his/her goals 
and information needs in operating with the system. 

7.5.1.4 Identification and Mitigation of Cognitive Biases 

In situations that are uncertain and complex or in case of time constraints, 
individuals often apply heuristics, or “rules of thumb,” when making decisions, 
or when evaluating the value, importance, and meaning of information. Although 
often useful, such heuristics can lead to severe and systematic judgment errors, 
referred to as cognitive biases. In the literature, a wide range of cognitive biases 
have been identified, such as the confirmation bias, the framing effect, anchoring, 
or the Bayes-rate fallacy. Even if the history of cognitive bias research originated in 
the late 1960s (e.g., [109]), the mitigation of cognitive biases in visualizations is a 
relatively new and emerging research topic. Some suggestions on how appropriate 
visualization techniques could mitigate the effects of the aforementioned cognitive 
biases have been described in [16, 38]. An example from the context of medical 
information is that even experts have difficulties estimating the risk of treatments 
when confronted with conditional probabilities [49]. However, such Bayes-rate 
fallacies can be easily mitigated by showing frequencies rather than probabilities 
[44]. Interactive visualization techniques possess even greater potential to mitigate 
certain cognitive biases than static visualizations since the information can be shown 
from different perspectives and with different levels of detail. 

7.5.1.5 Instructional Design 

This refers to the creation of information units that ensure comprehension as well as 
an effective and sustainable learning process of users. Cognitive psychology focuses 
on the learning process from an information processing perspective. The working 
memory and its capacity limitations [11, 32] play a major role, for example, in case 
of the cognitive theory of multimedia learning (CTML) [61, 62] and the cognitive 
load theory (CLT) [104]. The CTML defines a set of principles for the design 
of information units, such as the multimedia principle, which states that pictures 
should be accompanied by explanatory text (narration) and vice versa. The CLT 
distinguishes between three different types of cognitive load: (a) intrinsic cognitive 
load is caused by the learning task itself (e.g., statistical information), (b) Germane 
cognitive load refers to activities that are required to foster learning, such as schema 
construction, and (c) extraneous cognitive load refers to cognitive activities that are 
irrelevant to learning and should therefore be avoided to prevent cognitive overload 
among consumers of the information units.
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7.5.1.6 Evaluation of Adaptive Systems 

In the context of adaptive health information systems, we favor a multi-method 
approach to formative and summative evaluation that combines qualitative and 
quantitative methods and statistical analyzes, as well as explorative and (quasi-) 
experimental study designs. This multi-method approach toward empirical research 
is also reflected in [9] and [14]. Evaluation activities that are particularly challenging 
include (i) the collection and monitoring of user requirements, (ii) the holistic 
examination of the impact of instructional design guidelines and principles on 
user comprehension, learning processes, and the avoidance of misconceptions and 
cognitive biases, and (iii) the identification and validation of ideal adaptation by 
comparing prototypes that use different degrees of adaptivity and personalization 
[75] and differing interactive mechanisms. 

7.5.2 Research Challenges 

Based on the above requirements discussion, we specify the following guiding 
research challenges and questions for cognitive psychology for A. +CHIS as follows: 

• What instructional design principles should be applied in the construction of 
information units to ensure comprehension and an effective and sustainable learn-
ing process? What cognitive biases and potential misconceptions are involved 
and/or evoked when interacting with A. +CHIS and how can they be detected and 
mitigated? 

• What advanced aspects of personalization, multidimensional adaptation, and 
interaction should be implemented in A. +CHIS to ensure the comprehension 
and learning process is effective and sustainable? How can these aspects be 
improved? 

• What cognitive and motivational processes are involved in interacting with the 
A. +CHIS in a self-regulated manner and how can users’ previous knowledge, 
information needs, and motives be assessed in a non-intrusive fashion? What 
kind of feedback loops between users and the A. +CHIS (in both directions) can 
be used to increase knowledge, motivation, and health-related behaviors? 

• What are the requirements, motives, and information needs of individual users 
and different user groups, such as patients and relatives, when using standard 
CHIS? Are existing evaluation methods suitable for comparing non-adaptive and 
different degrees and forms of adaptive and interactive A. +CHIS with regard to 
comprehension and learning processes, motives, and user behavior?
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7.6 Architecture and Machine Learning Methods for an 
Adaptive Visual Consumer Health Information System 

In the following, we devise a system architecture which can implement an A. +CHIS. 
It is based on the following core components and makes use of knowledge databases 
encoding the domain knowledge on health information, customer description 
including cognitive profiles, and visualization rules and guidelines. An adaptation 
engine predicts user interest, delivers visual information, and manages user profiles. 
We also discuss the key role of Machine Learning in implementing the adaptation 
engine. 

7.6.1 Overview of Proposed Architectures 

The Adaptation Engine (Fig. 7.1 center) drives the selection, adaptation, and 
presentation of appropriate health information to consumers, based on their informa-
tion needs, expectations, previous knowledge, etc. The engine queries semantically 
structured information from three specific Knowledge Databases (KDBs). Each 
KDB uses appropriate semantic structures such as concept maps and ontologies 
to store facts and relationships about domains. The Medical KDB (Fig. 7.1 top 
left) stores evidence-based knowledge about type 2 diabetes. One example is 
information on indications and treatment goals for blood sugar-lowering non-drug 
or drug therapy that takes into account the predispositions and behavior of patients,

�
�
�
�

Fig. 7.1 System architecture of proposed A. +CHIS: an adaptation engine (center) automatically 
selects and adapts health information to suit consumers, based on knowledge databases of medical 
information (top left), consumer profile information (top right), and visualization guidelines 
(bottom left). A visualization engine (bottom right) presents the adapted information and collects 
consumer feedback, updating the consumer profile and further improving the user information 
provision
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including information on the possible benefits and harms of intensifying treatment. 
Another example is criteria for the diagnosis of diabetes and the probability of 
specific disease courses in relation to patient compliance and behavior. This KDB 
may be populated using selected literature and research data from diabetes research. 
The Consumer KDB (Fig. 7.1 top right) stores profiles about consumers and 
describes medically and cognitively relevant characteristics such as biophysical 
properties like age, gender, medical history, and cognitive properties like pre-
knowledge, interests, preferences and expectations, biases, uncertainties, medical 
literacy, etc. This KDB is populated directly when consumers provide data about 
themselves and indirectly by inferring interest, e.g., by comparing consumers, or 
analyzing consumer interactions with the system. The Visualization KDB (Fig. 7.1 
bottom left) stores rules and best practices for the effective visual representation 
of data and information, depending on data characteristics, user tasks, and user 
visual literacy. Examples include effective diagram types to visualize probabilities 
in relation to the visual literacy of consumers, and rules on how to aggregate 
and dis-aggregate information, and thus to adjust the provided level of detail and 
representation of the information content. This KDB is populated based on existing 
visualization research and guidelines. 

The specific tasks of the adaptation engine are to initialize the presentation of 
information to new consumers. We can assume that at the beginning, no profile 
information on new consumers is available. To initialize the consumer profile, e.g., 
explicit selection of topics by users, question-answering sessions, or contextual 
prediction of consumer profiles based on similarity to existing consumers are 
possible, among others. The tasks of the adaptation engine include keeping track of 
returning consumers by updating existing consumer profiles. The Recommender 
task comprises mechanisms to decide what information to show to users and at what 
level of detail. The  Visualizer task determines how to present the information, e.g., 
numerically, textually, symbolically, diagrammatically, interactively, etc. 

The Visualization Engine presents health information to the user, provides 
interaction mechanisms, and, actively and passively, collects Relevance Feedback 
about the consumer, e.g., to determine whether the presented information is helpful 
and relevant, not relevant or already known, etc. This feedback is used to further 
adapt and improve the health information and to update the consumer KDB. The 
visualization engine supports browser-based visualization environments that scale 
to different platforms, from mobile devices for on-the-go usage, to desktop settings 
at home, and to large touch-displays e.g., made available in practices and public 
spaces. 

Note that this architecture is flexible with regard to the amount of information 
in its specific individual knowledge databases. For a first implementation, repre-
sentative information in the KDBs should be ingested as far as possible. However, 
we expect it is not possible to obtain complete information (however measured) 
in each domain. For example, it may not be possible or helpful to attempt to 
gather all available medical knowledge on diabetes or all imaginable medically 
and cognitively relevant consumer characteristics. However, one may ensure that 
sufficient representative information is available in each KDB to enable the research,
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development, and evaluation of novel A. +CHIS with such an architecture. Infor-
mation may be collected bottom-up, beginning with representative information 
provided in existing standard CHIS and gradually extended from the state of the 
art. 

7.6.2 Machine Learning Approaches for Adaptation 

7.6.2.1 Main Methods and Application Possibilities in an Adaptive CHIS 

The adaptation engine has many tasks which require appropriate algorithms to 
operate. Machine Learning and Data Science [23] are rapidly expanding fields 
of technology, which provide a wealth of approaches that can be leveraged for 
adaption. Important tasks in Machine Learning are clustering, classification, and 
prediction. Clustering groups similar items, useful, e.g., to group information items 
on the same topic for recommending to users, or, to assign users of the system 
into similar interest groups. Classification assigns labels to new, previously unseen 
information items or users. It is useful, e.g., to classify the stage and information 
need of a user within a diabetes development scenario (see Sect. 7.2) or the  
occurrence of cognitive biases a user may exhibit (see Sect. 7.5.1.4). In prediction, 
one extrapolates information following an observed state. This is useful, e.g., to 
predict the next information items a user may be interested in, to be able to 
recommend it. 

Also important to us are methods from Natural Language Processing (NLP) [35]. 
Information retrieval methods enable finding relevant information in response to 
user queries. Similarity can be computed over different information items, from 
which clusters of information can be determined for over viewing large amounts 
of information. NLP provides methods for topic extraction from text collections, 
and text summarization. The latter is useful to adapt the level of detail by which 
information is shown, e.g., either in full text form or in an aggregate or just keywords 
describing topics. 

Recommender systems research [52] addresses methods to find matching infor-
mation items for users to recommend, with many applications, e.g., in e-Commerce, 
social networks, and information search. The methods typically take into account 
the recommendation properties of the user, the application and usage context, and 
the information domain. Methods are based on recommending items among similar 
users (collaborative filtering), recommending similar or dissimilar items (content-
based filtering), and/or modeling and taking into account knowledge about the 
application domain. Recently, Health Recommender Systems (HRSs) have emerged 
as an important application domain [108]. As the authors of that survey discuss, 
goals include improving the understanding of the medical condition, improving 
the health condition, and motivating a healthier lifestyle. The adaptive CHIS can 
incorporate such methods.
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Our A. +CHIS relies in particular on the visual representation of information, and 
in the past, visualization systems have incorporated adaptation and recommendation 
methods to some extent. The Polaris system [102] implemented a rule-based 
approach to choose an appropriate visual representation, based on the specific 
dataset to show. The Voyager system [115] supports the interactive exploration of 
datasets. The user selects initial data variables of interest, and the system suggests 
to expand this selection by additional variables. This approach has been shown 
to stimulate interaction and obtain broader insight into the data. In the Draco 
framework [65], information visualization design knowledge is formalized and can 
be applied to automatically create visualizations for input datasets, to be explored 
by the users. 

7.6.2.2 Discussion of Machine Learning Approaches 

The above is just a selection of techniques from a much larger body of work in 
Machine Learning, Recommender Systems, and Visualization Automation. It can be 
used to start building an adaptive CHIS system. There are not only many interesting 
possibilities but also pitfalls in applying Machine Learning methods to adaptation. 
Often, an extensive amount of training data or formal modeling of knowledge like 
rules and ontologies is required. The amount and quality of this data is decisive for 
the effectiveness of the adaptation. Appropriate training data may not be sufficiently 
available due to cost, privacy concerns, or small user and/or expert base. In addition, 
typical problems in Machine Learning like data transformation and normalization, 
extraction of descriptors/feature vectors as input to the methods, and choice of 
parameters need to be solved. Hence, algorithms oftentimes do not work out of 
the box. 

On the user side, we wish to provide the users with a good understanding of 
why the system makes certain adaptations and recommendations. Machine Learning 
methods in many cases work as a black box, with the user not being able to 
comprehend the decisions and how they relate to her or his data and requests. 
Also, the predictions made often come with uncertainties of varying degrees. Recent 
approaches try to include the users tight in the Machine Learning process by visual 
representations of the data, the algorithms, and the results [39] and hence improve 
trust in the results [28]. 

An adaptive CHIS system can be built step by step, integrating more adaptation 
methods over time and gradually evaluating these for the effectiveness, acceptance, 
and eventually, influence on the user health and understanding. 

7.7 Conclusion 

There is an urgent need for adaptive, personalized, and interactive Consumer 
Health Information Systems (CHIS), which provide suitable medical information 
to consumers, considering their current and evolving information needs, health
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literacy, age, gender, preferences, and knowledge state, etc. To design, implement, 
and evaluate such an A. +CHIS, a synthesis of profound expertise in the fields 
of information visualization, evidence-based health information, and cognitive 
psychology is required. The use case for A. +CHIS will be type 2 diabetes mellitus 
since it is highly relevant to public health and affects a broad section of the 
population. As outlined in Sect. 7.2, this use case is more complex than one might 
initially think: different patients with type 2 diabetes mellitus may have completely 
different information needs, which also affects the what, how, and level of detail of 
the information presented to the consumers. 

In the course of a research project in Austria with three universities (Graz 
University of Technology, Graz University, and Medical University of Graz) lasting 
for 4.5 years, an A. +CHIS will be designed, developed, and evaluated. This A. +CHIS 
aims to overcome the restrictions of current static CHIS, by introducing innovative 
interactive information visualization techniques, evidence-based health information 
and principles of cognitive psychology to avoid cognitive biases and misconcep-
tions, over-information or over-diagnosis, and to facilitate comprehension, health 
literacy, and desirable health-related behavior, including improved communication 
between patients and medical doctors and increased compliance. 

Acknowledgments This work was funded by the Austrian Science Fund (FWF) as part of 
the project “Human-Centered Interactive Adaptive Visual Approaches in High-Quality Health 
Information” (A. +CHIS Grant No. FG 11-B). 

References 

1. J. Aanstoos. Visual literacy: an overview. In 32nd Applied Imagery Pattern Recognition 
Workshop, 2003. Proceedings., pages 189–193, 2003. 

2. G. Abdel-Hamid. Mind maps as a new teaching strategy for medical students. MOJ Anat & 
Physiol, 3(3):00090, 2017. 

3. F. Ackermann, C. Eden, and S. Cropper. Getting started with cognitive mapping. Banxia 
Software, 1992. 

4. H. Al-Zubaide and A. A. Issa. Ontbot: Ontology based chatbot. In International Symposium 
on Innovations in Information and Communications Technology, pages 7–12, 2011. 

5. D. Albert. Knowledge structures. Springer, 1994. 
6. D. Albert, C. Hockemeyer, Z. Kulcsar, and G. Shorten. Competence assessment for spinal 

anaesthesia. In Symposium of the Austrian HCI and Usability Engineering Group, pages 
165–170. Springer, 2007. 

7. D. Albert and J. Lukas. Knowledge spaces: Theories, empirical research, and applications. 
Psychology Press, 1999. 

8. D. Albert and C. Steiner. Representing Domain Knowledge by Concept Maps: How to 
Validate Them? In T. Okamoto, D. Albert, and T. H. . F. W. Hesse, editors, 2nd Joint 
Workshop of Cognition and Learning Through Media-Communication for Advanced e-
Learning (JWCL), pages 169–174, Tokyo, Japan, 2005. 

9. D. Albert and C. M. Steiner. Reflections on the evaluation of adaptive learning technologies. 
In 2011 IEEE International Conference on Technology for Education, pages 295–296, 2011. 

10. A. D. Association. Introduction: Standards of medical care in diabetes—2021. Diabetes 
Care, 44(Supplement 1):S1–S2, 2021.



190 T. Schreck et al.

11. A. D. Baddeley and G. Hitch. Working memory. In Psychology of learning and motivation, 
volume 8, pages 47–89. Elsevier, 1974. 

12. E. Baumann and F. Czerwinski. Erst mal Doktor Google fragen? Nutzung neuer Medien 
zur Information und zum Austausch über Gesundheitsthemen, pages 57–79. Bertelsmann 
Stiftung, 01 2015. 

13. M. Bedek, P. Seitlinger, S. Kopeinik, and D. Albert. Inferring a learner’s cognitive, 
motivational and emotional state in a digital educational game. Electronic journal of e-
Learning, 10(2):172–184, 2012. 

14. M. A. Bedek, O. Firssova, E. P. Stefanova, F. Prinsen, and F. Chaimala. User-driven 
development of an inquiry-based learning platform: Qualitative formative evaluations in 
weSPOT. Interaction Design and Architecture(s) Journal - IxD&A, 23:122–139, 2014. 

15. M. A. Bedek, M. D. Kickmeier-Rust, and D. Albert. Formal concept analysis for modelling 
students in a technology-enhanced learning setting. In ARTEL@ EC-TEL, pages 27–33, 2015. 

16. M. A. Bedek, A. Nussbaumer, L. Huszar, and D. Albert. Methods for discovering cognitive 
biases in a visual analytics environment. In Cognitive Biases in Visualizations, pages 61–73. 
Springer, 2018. 

17. N. D. Berkman, S. L. Sheridan, K. E. Donahue, D. J. Halpern, and K. Crotty. Low Health 
Literacy and Health Outcomes: An Updated Systematic Review. Annals of Internal Medicine, 
155(2):97–107, 07 2011. 

18. L. Biernatzki, S. Kuske, J. Genz, M. Ritschel, A. Stephan, C. Bächle, S. Droste, S. Grobosch, 
N. Ernstmann, N. Chernyak, et al. Information needs in people with diabetes mellitus: a 
systematic review. Systematic reviews, 7(1):1–21, 2018. 

19. D. Borland, V. West, and E. Hammond. Multivariate visualization of system-wide national 
health service data using radial coordinates. In 2014 IEEE Workshop on Visual Analytics in 
Healthcare (VAHC), 11 2014. 

20. M. Brehmer, B. Lee, B. Bach, N. H. Riche, and T. Munzner. Timelines revisited: A design 
space and considerations for expressive storytelling. IEEE Transactions on Visualization and 
Computer Graphics, 23(9):2151–2164, 2017. 

21. M. Bunge, I. Mühlhauser, and A. Steckelberg. What constitutes evidence-based patient 
information? overview of discussed criteria. Patient Education and Counseling, 78(3):316– 
328, 2010. Changing Patient Education. 

22. H. S. G. Caballero, A. Corvo, P. M. Dixit, and M. A. Westenberg. Visual analytics for 
evaluating clinical pathways. In 2017 IEEE Workshop on Visual Analytics in Healthcare 
(VAHC), pages 39–46, 2017. 

23. L. Cao. Data science: A comprehensive overview. ACM Comput. Surv., 50(3), 2017. 
24. N. Cao, D. Gotz, J. Sun, and H. Qu. Dicon: Interactive visual analysis of multidimensional 

clusters. IEEE Transactions on Visualization and Computer Graphics, 17(12):2581–2590, 
2011. 

25. S. K. Card, T. P. Moran, and A. Newell. The psychology of human-computer interaction. 
1983. Hillsdale, NJ: Lawrence Erlbaum Associates, 1983. 

26. A. Cawsey, F. Grasso, and C. Paris. Adaptive Information for Consumers of Healthcare, pages 
465–484. Springer Berlin Heidelberg, Berlin, Heidelberg, 2007. 

27. D. Charnock, S. Shepperd, G. Needham, and R. Gann. DISCERN: an instrument for 
judging the quality of written consumer health information on treatment choices. Epidemiol 
Community Health, 53(2):105–111, 1999. 

28. A. Chatzimparmpas, R. M. Martins, I. Jusufi, K. Kucher, F. Rossi, and A. Kerren. The state of 
the art in enhancing trust in machine learning models with the use of visualizations. Comput. 
Graph. Forum, 39(3):713–756, 2020. 

29. H. Chen, W. Chen, H. Mei, Z. Liu, K. Zhou, W. Chen, W. Gu, and K. Ma. Visual abstraction 
and exploration of multi-class scatterplots. IEEE Transactions on Visualization and Computer 
Graphics, 20(12):1683–1692, 2014.



7 Adaptive Visualization of Health Information 191

30. L. Chen, D. Lu, M. Zhu, M. Muzammal, O. W. Samuel, G. Huang, W. Li, and 
H. Wu. OMDP: An ontology-based model for diagnosis and treatment of diabetes patients 
in remote healthcare systems. International Journal of Distributed Sensor Networks, 
15(5):1550147719847112, 2019. 

31. A. Coulter, V. Entwistle, and D. Gilbert. Sharing decisions with patients: is the information 
good enough? BMJ, 318:318–322, 1999. 

32. N. Cowan. The magical number 4 in short-term memory: A reconsideration of mental storage 
capacity. Behavioral and brain sciences, 24(1):87–114, 2001. 

33. F. Dabek, E. Jimenez, and J. J. Caban. A timeline-based framework for aggregating and 
summarizing electronic health records. In 2017 IEEE Workshop on Visual Analytics in 
Healthcare (VAHC), pages 55–61, 2017. 

34. B. J. Daley and D. M. Torre. Concept maps in medical education: an analytical literature 
review. Medical education, 44(5):440–448, 2010. 

35. S. Dandapat. Nitin indurkhya and fred j. damerau (eds): Handbook of natural language 
processing (second edition) - CRC Press, Boca Raton, 2010, xxxiii + 678 pp, hardbound, 
ISBN 978-1-4200-8592-1. Mach. Transl., 25(4):377–381, 2011. 

36. L. Daraz, A. Morrow, O. Ponce, B. Beuschel, M. Farah, A. Katabi, M. Alsawas, A. Majzoub, 
R. Benkhadra, M. Seisa, J. Ding, L. Prokop, and M. Murad. Can patients trust online health 
information? A meta-narrative systematic review addressing the quality of health information 
on the Internet. Journal of General Internal Medicine, 34(9):1884–1891, 2019. 

37. J.-P. Doignon and J.-C. Falmagne. Spaces for the assessment of knowledge. International 
journal of man-machine studies, 23(2):175–196, 1985. 

38. G. Ellis. Cognitive Biases in Visualizations. Springer, 2018. 
39. A. Endert, W. Ribarsky, C. Turkay, B. L. W. Wong, I. T. Nabney, I. D. Blanco, and F. Rossi. 

The state of the art in integrating machine learning into visual analytics. Comput. Graph. 
Forum, 36(8):458–486, 2017. 

40. J.-C. Falmagne, D. Albert, C. Doble, D. Eppstein, and X. Hu. Knowledge spaces: 
Applications in education. Springer Science & Business Media, 2013. 

41. M. Feng, B. Xiang, M. R. Glass, L. Wang, and B. Zhou. Applying deep learning to 
answer selection: A study and an open task. In 2015 IEEE Workshop on Automatic Speech 
Recognition and Understanding (ASRU), pages 813–820, 2015. 

42. A. Gaisser. Bedarf an Krebsinformation in Deutschland: was für wen und wie? Forum, pages 
259–264, 2012. 

43. M. Garshasbi, H. Asadi, and A. Asosheh. Application and effectiveness of ontology on e-
health. In 7’th International Symposium on Telecommunications (IST’2014), pages 544–549, 
2014. 

44. G. Gigerenzer and A. Edwards. Simple tools for understanding risks: From innumeracy to 
insight. Bmj, 327(7417):741–744, 2003. 

45. S. Guo, C. Lin, D. Gotz, B. Jin, H. Zha, L. Shu, and N. Cao. Understanding care plans of 
community acquired pneumonia based on Sankey diagram. In 2016 IEEE Workshop on Visual 
Analytics in Healthcare (VAHC), 2016. 

46. F. Hill-Briggs and A. Smith. Evaluation of diabetes and cardiovascular disease print patient 
education materials for use with low-health literate populations. Diabetes care, 31:667–71, 
05 2008. 

47. I. Hirschberg, G. Seidel, D. Strech, H. Bastian, and M.-L. Dierks. Evidence-based health 
information from the users’ perspective - a qualitative analysis. BMC health services research, 
13:405, 10 2013. 

48. C. Hockemeyer, A. Nussbaumer, E. Lövquist, A. Aboulafia, D. Breen, G. Shorten, and 
D. Albert. Applying a web and simulation-based system for adaptive competence assessment 
of spinal anaesthesia. In International Conference on Web-Based Learning, pages 182–191. 
Springer, 2009. 

49. U. Hoffrage, S. Lindsey, R. Hertwig, and G. Gigerenzer. Communicating statistical 
information. Science, 290:2261–2262, 2000.



192 T. Schreck et al.

50. K. Horvath, N. Posch, R. Brodnig, J. Plath, and A. Siebenhofer-Kroitzsch. Qualität medi-
zinischer Informationsbroschüren in den Hausarztpraxen der Steiermark. In 51. Kongress 
für Allgemeinmedizin und Familienmedizin, Der Mensch im Mittelpunkt? Hausärztliches 
Handeln zwischen Ansprüchen und Alltag, 2017. Abstract. 

51. W. Hsu, R. K. Taira, S. El-Saden, H. Kangarloo, and A. A. T. Bui. Context-based electronic 
health record: Toward patient specific healthcare. IEEE Transactions on Information 
Technology in Biomedicine, 16(2):228–234, 2012. 

52. D. Jannach, M. Zanker, A. Felfernig, and G. Friedrich. Recommender Systems - An 
Introduction. Cambridge University Press, 2010. 

53. B. Kamsu-Foguem, G. Diallo, and C. Foguem. Conceptual graph-based knowledge represen-
tation for supporting reasoning in African traditional medicine. Engineering Applications of 
Artificial Intelligence, 26:1348–1365, 04 2013. 

54. M. Khan, M. Hashim, J. King, R. Govender, and J. Alkaabi. Epidemiology of type 2 diabetes 
– global burden of disease and forecasted trends. Journal of Epidemiology and Global Health, 
10, 11 2019. 

55. M. D. Kickmeier-Rust and D. Albert. Personalized support, guidance, and feedback by 
embedded assessment and reasoning: What we can learn from educational computer games. 
In IFIP Human-Computer Interaction Symposium, pages 142–151. Springer, 2010. 

56. D. E. Kieras et al. Knowledge representation in cognitive psychology,’. Mathematical 
Frontiers of the Social and Policy Sciences, 1981. 

57. Y. Kweon and K.-W. Choi. Readability and suitability evaluation of educational materials on 
diabetes mellitus. The Korean Journal of Health Service Management, 8:161–174, 06 2014. 

58. H. Liao, Y. Wu, L. Chen, and W. Chen. Cluster-based visual abstraction for multivariate 
scatterplots. IEEE Transactions on Visualization and Computer Graphics, 24(9):2531–2545, 
2018. 

59. V. Lopez, M. Pasin, and E. Motta. Aqualog: An ontology-portable question answering 
system for the semantic web. In Proceedings of the Second European Conference on The 
Semantic Web: Research and Applications, ESWC’05, pages 546–562, Berlin, Heidelberg, 
2005. Springer-Verlag. 

60. E. Lövquist, A. Aboulafia, D. Breen, G. Shorten, D. Zhang, and D. Albert. Designing a 
simulation-supported adaptive assessment system for spinal anaesthesia. In Proceedings 
of the 11th IASTED International Conference Computers and Advanced Technology in 
Education (CATE2008), pages 316–321, 2008. 

61. R. E. Mayer. Cognitive theory of multimedia learning. The Cambridge handbook of 
multimedia learning, 41:31–48, 2005. 

62. R. E. Mayer. Multimedia Learning. Cambridge University Press, 2 edition, 2009. 
63. A. Mayorga and M. Gleicher. Splatterplots: Overcoming overdraw in scatter plots. IEEE 

Transactions on Visualization and Computer Graphics, 19(9):1526–1538, 2013. 
64. S. Mohebi, L. Azadbakht, A. Feizi, G. Sharifirad, and M. Kargar. Review the key role of 

self-efficacy in diabetes care. Journal of education and health promotion, 2, 2013. 
65. D. Moritz, C. Wang, G. L. Nelson, H. Lin, A. M. Smith, B. Howe, and J. Heer. Formalizing 

visualization design knowledge as constraints: Actionable and extensible models in draco. 
IEEE Trans. Vis. Comput. Graph., 25(1):438–448, 2019. 

66. B. Moult, L. Franck, and H. Brady. Ensuring quality information for patients: development 
and preliminary validation of a new instrument to improve the quality of written health care 
information. Health Expect, 7(2):165–175, 2004. 

67. I. Muehlhauser, M. Albrecht, and A. Steckelberg. Evidenzbasierte gesundheitsinformationen. 
Zbl Arbeitsmed, 64:334–337, 2014. 

68. I. Mühlhauser and M. Lenz. [Does patient knowledge improve treatment outcome?]. 
Zeitschrift für Evidenz, Fortbildung und Qualität im Gesundheitswesen, 102:223–230, 02 
2008. 

69. H. Muller, H. Maurer, R. Reihs, S. Sauer, and K. Zatloukal. Adaptive visual symbols for 
personal health records. In 2011 15th International Conference on Information Visualisation, 
pages 220–225, 2011.



7 Adaptive Visualization of Health Information 193

70. T. Munzner. Visualization Analysis and Design: Principles, Techniques, and Practice. AK  
Peters, 2014. 

71. S. Narciss. Feedback strategies. Encyclopedia of the learning sciences, volume F (6), pages 
1289–1293, 2012. 

72. S. Narciss, A. Proske, and H. Koerndle. Promoting self-regulated learning in web-based 
learning environments. Computers in human behavior, 23(3):1126–1144, 2007. 

73. L. Nie, M. Wang, Y. Gao, Z. Zha, and T. Chua. Beyond text QA: Multimedia answer 
generation by harvesting web information. IEEE Transactions on Multimedia, 15(2):426– 
441, 2013. 

74. M. Niranjan, M. S. Saipreethy, and T. G. Kumar. An intelligent question answering 
conversational agent using naive Bayesian classifier. In 2012 IEEE International Conference 
on Technology Enhanced Education (ICTEE), pages 1–5, 2012. 

75. A. Nussbaumer, C. M. Steiner, and O. Conlan. Towards a multi-modal methodology for user-
centred evaluation of adaptive systems. In Adjunct Publication of the 27th Conference on 
User Modeling, Adaptation and Personalization, pages 219–220, 2019. 

76. A. Ottley, R. Garnett, and R. Wan. Follow the clicks: Learning and anticipating mouse 
interactions during exploratory data analysis. Comput. Graph. Forum, 38(3):41–52, 2019. 

77. S. R. Paige, J. L. Krieger, and M. L. Stellefson. The influence of ehealth literacy on perceived 
trust in online health communication channels and sources. Journal of health communication, 
22(1):53–65, 2017. 

78. M. G. Pandy, A. J. Petrosino, B. A. Austin, and R. E. Barr. Assessing adaptive expertise in 
undergraduate biomechanics. Journal of Engineering Education, 93(3):211–222, 2004. 

79. A. Patel and S. Jain. Formalisms of representing knowledge. Procedia Computer Science, 
125:542–549, 2018. 

80. C. Plaisant, D. Heller, J. Li, B. Shneiderman, R. A. Mushlin, and J. Karat. Visualizing medical 
records with lifelines. In CHI 98 Conference Summary on Human Factors in Computing 
Systems, pages 28–29, 1998. 

81. J. Poelmans, D. I. Ignatov, S. O. Kuznetsov, and G. Dedene. Formal concept analysis 
in knowledge processing: A survey on applications. Expert systems with applications, 
40(16):6538–6560, 2013. 

82. R. Preiner, J. Schmidt, K. Krösl, T. Schreck, and G. Mistelbauer. Augmenting node-link 
diagrams with topographic attribute maps. Computer Graphics Forum, 39(3):369–381, 2020. 

83. J. Protheroe, E. Estacio, and S. Saidy-Khan. Patient information materials in general practices 
and promotion of health literacy: an observational study of their effectiveness. The British 
journal of general practice : the journal of the Royal College of General Practitioners, 65  
632:e192–7, 2015. 

84. B. R. Ranoliya, N. Raghuwanshi, and S. Singh. Chatbot for university related FAQs. In 
2017 International Conference on Advances in Computing, Communications and Informatics 
(ICACCI), pages 1525–1530, 2017. 

85. G. Rasch. Studies in mathematical psychology: I. Probabilistic models for some intelligence 
and attainment tests. Nielsen & Lydiche, Oxford, England, 1960. 

86. A. Rind, T. D. Wang, W. Aigner, S. Miksch, K. Wongsuphasawat, C. Plaisant, and B. Shnei-
derman. Interactive information visualization to explore and query electronic health records. 
Foundations and Trends in Human-Computer Interaction, 5(3):207–298, 2013. 

87. P. Ruchikachorn and K. Mueller. Learning visualizations by analogy: Promoting visual 
literacy through visualization morphing. IEEE Transactions on Visualization and Computer 
Graphics, 21(9):1028–1044, 2015. 

88. S. Saenger, B. Lang, D. Klemperer, C. Thomeczek, and M.-L. Dierks. Manual Patienteninfor-
mation. Empfehlungen zur Erstellung evidenzbasierter Patienteninformationen, volume 25. 
Aerztliches Zentrum für Qualitaet in der Medizin, 01 2007. 

89. H. Sampathkumar, X. Chen, and B. Luo. Ontology-based visualization of healthcare data 
mined from online healthcare forums. In 2015 International Conference on Healthcare 
Informatics, pages 325–334, 2015.



194 T. Schreck et al.

90. L. Sbaffi and J. Rowley. Trust and credibility in online health information: a review and 
agenda for future research. Journal of Medical Internet Research, 19, 04 2017. 

91. P. Seitlinger, T. Ley, D. Kowald, D. Theiler, I. Hasani-Mavriqi, S. Dennerlein, E. Lex, and 
D. Albert. Balancing the fluency-consistency tradeoff in collaborative information search 
with a recommender approach. International Journal of Human–Computer Interaction, 
34(6):557–575, 2018. 

92. L. Shao, A. Mahajan, T. Schreck, and D. J. Lehmann. Interactive regression lens for exploring 
scatter plots. Computer Graphics Forum, 36(3):157–166, 2017. 

93. C. Shieh and B. Hosei. Printed health information materials: Evaluation of readability and 
suitability. Journal of community health nursing, 25:73–90, 04 2008. 

94. V. J. Shute and Y. J. Kim. Formative and stealth assessment. In Handbook of Research on 
Educational Communications and Technology, pages 311–321. Springer New York, 2014. 

95. K.  Sørensen, J. M. Pelikan, F. Röthlin, K. Ganahl,  Z.  Slonska, G. Doyle, J. Fullam,  
B. Kondilis, D. Agrafiotis, E. Uiters, M. Falcon, M. Mensing, K. Tchamov, S. v. d. Broucke, 
and H. Brand. Health literacy in Europe: comparative results of the European health literacy 
survey (HLS-EU). European Journal of Public Health, 25(6):1053–1058, 04 2015. 

96. K. Sørensen, S. Van den Broucke, J. Fullam, G. Doyle, J. Pelikan, Z. Slonska, H. Brand, and 
(HLS-EU) Consortium Health Literacy Project European. Health literacy and public health: 
A systematic review and integration of definitions and models. BMC Public Health, 12(1):80, 
Jan 2012. 

97. J. F. Sowa. Architectures for intelligent systems. IBM Systems Journal, 41(3):331–349, 2002. 
98. P. Srivastava and N. Singh. Automatized medical chatbot (medibot). In 2020 International 

Conference on Power Electronics IoT Applications in Renewable Energy and its Control 
(PARC), pages 351–354, 2020. 

99. L. Stefanutti and D. Albert. Skill assessment in problem solving and simulated learning 
environments. Journal of Universal Computer Science - J. UCS, 9(12):1455–1468, 2003. 

100. B. Steichen, G. Carenini, and C. Conati. User-adaptive information visualization: Using eye 
gaze data to infer visualization tasks and user cognitive abilities. In Proceedings of the 2013 
International Conference on Intelligent User Interfaces, IUI’13, pages 317–328, New York, 
NY, USA, 2013. Association for Computing Machinery. 

101. C. M. Steiner, D. Albert, and J. Heller. Concept mapping as a means to build e-learning. 
Advanced principles of effective e-learning, pages 59–111, 2007. 

102. C. Stolte, D. Tang, and P. Hanrahan. Polaris: a system for query, analysis, and visualization 
of multidimensional databases. Commun. ACM, 51(11):75–84, 2008. 

103. H. Suominen, T. Schreck, G. Leroy, H. Hochheiser, L. Goeuriot, L. Kelly, D. L. Mowery, 
J. Nualart, G. Ferraro, and D. A. Keim. Task 1 of the CLEF eHealth Evaluation Lab 2014. 
In Working Notes for CLEF 2014 Conference, Sheffield, UK, September 15–18, 2014, pages 
1–30, 2014. 

104. J. Sweller, J. J. Van Merrienboer, and F. G. Paas. Cognitive architecture and instructional 
design. Educational psychology review, 10(3):251–296, 1998. 

105. D. Toker, C. Conati, G. Carenini, and M. Haraty. Towards adaptive information visualization: 
On the influence of user characteristics. In User Modeling, Adaptation, and Personalization, 
pages 274–285, Berlin, Heidelberg, 2012. Springer Berlin Heidelberg. 

106. B. Tony and B. Buzan. The mind map book: How to use radiant thinking to maximize your 
brain’s untapped potential, 1993. 

107. B. Tran, M. Singh, B. Lee, R. Rudd, and D. Singhal. Readability, complexity, and suitability 
analysis of online lymphedema resources. Journal of Surgical Research, 213, 03 2017. 

108. T. N. T. Tran, A. Felfernig, C. Trattner, and A. Holzinger. Recommender systems in the 
healthcare domain: state-of-the-art and research issues. J. Intell. Inf. Syst., 57(1):171–201, 
2021. 

109. A. Tversky and D. Kahneman. Judgment under uncertainty: Heuristics and biases. Science, 
185(4157):1124–1131, 1974.



7 Adaptive Visualization of Health Information 195

110. M. Wagner, D. Slijepcevic, B. Horsak, A. Rind, M. Zeppelzauer, and W. Aigner. KAVAGait: 
Knowledge-assisted visual analytics for clinical gait analysis. IEEE Trans. Vis. Comput. 
Graph., 25(3):1528–1542, 2019. 

111. T. D. Wang, C. Plaisant, B. Shneiderman, N. Spring, D. Roseman, G. Marchand, V. Mukher-
jee, and M. Smith. Temporal summaries: Supporting temporal categorical searching, 
aggregation and comparison. IEEE Transactions on Visualization and Computer Graphics, 
15(6):1049–1056, 2009. 

112. M. Ward, G. Grinstein, and D. Keim. Interactive Data Visualization: Foundations, Tech-
niques, and Applications. Taylor and Francis, 2015. 

113. R. Wille. Formal concept analysis as mathematical theory of concepts and concept 
hierarchies. In Formal concept analysis, pages 1–33. Springer, 2005. 

114. A. Williams, K. Muir, and J. Rosdahl. Readability of patient education materials in 
ophthalmology: A single-institution study and systematic review. BMC Ophthalmology, 
16:133, 08 2016. 

115. K. Wongsuphasawat, D. Moritz, A. Anand, J. D. Mackinlay, B. Howe, and J. Heer. Voyager: 
Exploratory analysis via faceted browsing of visualization recommendations. IEEE Trans. 
Vis. Comput. Graph., 22(1):649–658, 2016. 

116. J. S. Yi, Y. ah Kang, J. T. Stasko, and J. A. Jacko. Toward a deeper understanding of the role of 
interaction in information visualization. IEEE Trans. Vis. Comput. Graph., 13(6):1224–1231, 
2007. 

117. O. V. Yurdakul, M. S. Kilicoglu, and F. Bagcier. Evaluating the reliability and readability of 
online information on osteoporosis. Archives of Endocrinology and Metabolism, 65:85–92, 
02 2021. 

118. Y. Zhang, K. Chanana, and C. Dunne. IDMVis: Temporal event sequence visualization for 
type 1 diabetes treatment decision support. IEEE Transactions on Visualization and Computer 
Graphics, 25(1):512–522, 2019. 

119. B. J. Zimmerman. Becoming a self-regulated learner: An overview. Theory into practice, 
41(2):64–70, 2002.



Chapter 8 
Design Cognition in Data Visualization 

Paul C. Parsons 

Abstract In this chapter I introduce the topic of design cognition and its relevance 
to data visualization. I outline two historically dominant paradigms of design 
cognition. The first, promoted by Herbert Simon in the 1970s, is the rational problem 
solving paradigm which is based on information processing psychology and 
problem solving theory. The second, promoted by Donald Schön in the 1980s, is the 
reflective practice paradigmwhich is based on constructivist philosophy and situated 
views of cognition. I outline some of their strengths and weakness and attempts to 
reconcile their differences. Underlying philosophical issues pertaining to cognition 
and epistemology are briefly discussed. I then examine implications of these two 
paradigms for four data visualization topics: defining, automating, modeling, and 
teaching data visualization design. In discussing these topics, possible avenues of 
future research are proposed. 

8.1 Introduction 

How do designers formulate and solve design problems? What kinds of cognitive 
processes do they rely on while doing so? These are the types of questions asked by 
the researchers studying design cognition. Rather than focusing on only methods, 
tools, or outcomes of designers, studies in design cognition investigate how and why 
designers think in the ways they do while designing. Design cognition has been 
studied across a wide variety of disciplines, including engineering [4], architecture 
[37], computer science [9], instructional design [59], and graphic design [76]. 
Across these disciplines, many aspects of cognition in design have been inves-
tigated, including, among others, episodic memory [35], fixation [62], chunking 
[43], bias [16], abductive reasoning [11], analogical reasoning [79], metacognitive 
monitoring and control [5], and recall [13]. A number of core strategies of design 

P. C. Parsons (�) 
Purdue University, West Lafayette, IN, USA 
e-mail: parsonsp@purdue.edu 

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023 
D. Albers Szafir et al. (eds.), Visualization Psychology, 
https://doi.org/10.1007/978-3-031-34738-2_8

197

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-34738-2protect T1	extunderscore 8&domain=pdf

 885 56845
a 885 56845 a
 
mailto:parsonsp@purdue.edu
mailto:parsonsp@purdue.edu
https://doi.org/10.1007/978-3-031-34738-2_8
https://doi.org/10.1007/978-3-031-34738-2_8
https://doi.org/10.1007/978-3-031-34738-2_8
https://doi.org/10.1007/978-3-031-34738-2_8
https://doi.org/10.1007/978-3-031-34738-2_8
https://doi.org/10.1007/978-3-031-34738-2_8
https://doi.org/10.1007/978-3-031-34738-2_8
https://doi.org/10.1007/978-3-031-34738-2_8
https://doi.org/10.1007/978-3-031-34738-2_8
https://doi.org/10.1007/978-3-031-34738-2_8
https://doi.org/10.1007/978-3-031-34738-2_8


198 P. C. Parsons

thinking have been identified through empirical investigation, including conjecture-
based problem formulation, problem-solution co-evolution, analogical reasoning, 
mental simulation, and fixated solution generation [5, 24]. 

Many cognitive structures and processes that are important for the use of 
visualizations are also important for their design. For instance, studies have shown 
that designers rely on chunking to ideate effectively [43], employ abductive 
reasoning during concept selection [19], are influenced by color in ways that bias 
their thinking while sketching [16], rely on shared mental models in collaborative 
settings [18], and struggle with fixation while generating ideas [12]. Topics such 
as cognitive bias, visual reasoning, fixation, and mental models are commonly seen 
in the visualization literature; however, they are almost exclusively focused on the 
cognition of users rather than the cognition of designers. In this chapter, I argue that 
design cognition is an important yet neglected area of study for data visualization. 

8.1.1 Why Study Visualization Design Cognition? 

It is easy to appreciate why the cognition of users is an important area of inquiry for 
data visualization. The many different ways of visualizing data and creating interac-
tive interfaces have implications for how users interpret, understand, and act. Topics 
relating to visual marks and channels, color, mental models, uncertainty, biases, 
sensemaking, and others have received significant attention in the visualization 
literature. Indeed, the vast majority of literature at the intersection of visualization 
and psychology is focused on users, whereas the cognition of designers is largely an 
unexplored topic. The reason for this is unclear, especially since design cognition 
has been a research topic in multiple design disciplines for decades. 

One reason for a lack of inquiry into design cognition may stem from a 
commonly held assumption within many scientific fields. The assumption is that the 
design consists largely of the application of scientific knowledge to instrumental 
problems [8, 66]. From this standpoint, the important forms of design knowledge 
include laws, principles, guidelines, patterns, and other objective forms of knowl-
edge that can be codified, and the prototypical role of the designer is to know these 
and apply them to various design situations. For example, there may exist design 
guidelines about data types, visual marks and channels, color, visualization and 
interaction techniques, evaluation strategies, and other similar forms of knowledge. 
From this “application” perspective, the designers need to first know about these 
things and then determine how to apply them to particular problems. If they have 
the right training, experience, and access to guidelines when they need them, they 
can apply this existing knowledge in useful ways. 

While this “application” view may be appealing, it has been largely abandoned 
by design scholars, as it has not held up well to empirical scrutiny [14, 36, 39]. 
While objective, codified knowledge certainly plays a role in design and in many 
cases may be necessary, it is not sufficient for good design [75]. Rather, designers 
rely on a host of personal and contextual factors—along with the more formal types
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of knowledge—to engage with the complexity of situations they face in the real 
world [56]. Buchanan [8] articulates how widespread this assumption has been, 
noting that “each of the sciences that have come into contact with design has 
tended to regard design as an ‘applied’ version of its own knowledge,” emphasizing 
the mistake of viewing design as simply a “practical demonstration” of scientific 
findings. Thus, even if a robust program of research at the intersection of psychology 
and visualization is developed, if its scope is limited to users only—and especially 
if design is viewed merely as an application of research findings—we will likely fail 
to understand and influence design practice effectively. 

It is useful to ask whether the cognition of data visualization designers really 
needs to be studied when findings from several other design disciplines already 
exist and could be translated into a visualization context. There is evidence that 
aspects of design cognition are common across different design disciplines, although 
significant differences have also been identified [81]. For instance, Akin [2] found 
significant differences in design cognition among engineers and architects, and 
Purcell and Gero [62] found differences between mechanical engineers and product 
designers. In a review paper examining design across numerous domains, Visser 
[81] affirms the existence of differences and similarities and speculates that these 
differences may have implications for the kinds of knowledge that designers 
rely on. From this evidence, it is reasonable to assume that design cognition 
in visualization will share similarities with other fields yet will also have its 
own unique characteristics. For instance, designers in other fields—even related 
fields like interaction design and graphic design—may not have to navigate issues 
involving data wrangling, visual mapping, perceptual and cognitive considerations, 
and interactivity, all of which are important for data visualization. Research on 
design cognition has significantly influenced theory, practice, and education in 
numerous design fields [33] and could similarly do so for data visualization. 
However, the particular facets of visualization design cognition that make it different 
from other design disciplines must be carefully examined as a part of such an effort. 

8.1.2 Methods for Studying Design Cognition 

While the focus of this chapter is not methodological, a brief overview of how 
design cognition has been studied may be beneficial. Previous research has heavily 
relied on “protocol studies” to elicit cognitive processes [15, 24]. This method, 
which is already well known to visualization researchers doing human subjects 
studies, involves asking designers to “think-aloud” while doing a design activity. 
These studies generate verbal protocols that can be transcribed and analyzed with 
the goal of uncovering aspects of thinking and reasoning. This kind of approach 
can be taken with individual designers who work alone on design problems or with 
teams of designers working together. Team-based protocols have been used to elicit 
socio-cognitive facets of collaborative design cognition [2].
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Design cognition can also be studied in both controlled settings, such as a lab 
or workshop, and in less controlled settings, such as designers’ everyday work 
environments. Studies in controlled settings can be beneficial, as they allow common 
design tasks to be given to participants and allow for the control of variables, 
including time spent, access to resources, and so on. Although empirical lab 
studies are commonly employed in design research (e.g., [10, 31]), they differ from 
realistic design contexts in a number of ways. For instance, lab studies may exclude 
factors that shape design work in commercial settings, including the effects of 
organizational culture, project timescales, project management, and workload. Lab 
studies may also present participants with relatively simple problems over short 
time periods, which are not often representative of real-world design tasks. As is 
often the case in experimental research, there is the risk of reducing both ecological 
and external validity [10]. For these reasons, it is beneficial to conduct studies in 
both controlled “lab” settings and “in the wild” of real-world practice. Studies can 
employ a range of methods, including protocol analysis, semi-structured interviews, 
diary studies, contextual observations, and co-design workshops. 

8.2 Two Paradigms of Design Cognition 

Two dominant paradigms have historically been used to describe the cognitive 
nature of design. The first was articulated by Herbert Simon in the 1970s and was 
inspired by information processing psychology and theories of problem solving. 
The second was articulated by Donald Schön in the 1980s and was inspired by 
constructivist philosophy and situated views of cognition and professional practice. 
These two paradigms present different perspectives on the cognitive activities 
involved in designing and have different implications for how design is studied and 
taught. In what follows, I will refer to these views often as the “rational problem 
solving” view and the “reflective practice” view. These two paradigms will be 
described next, followed by some of their implications in general and for data 
visualization in particular. 

8.2.1 Design as Rational Problem Solving 

The work of Herbert Simon has been highly influential in the study of design cog-
nition [65], despite there being few references directly discussing design cognition 
among his nearly 1000 articles [80]. In particular, his book The Sciences of the 
Artificial [73] and his article “The Structure of Ill-Structured Problems” [74] serve  
as the foundation of his work on design cognition. Simon’s view of design cognition 
was unsurprisingly influenced by his pioneering body of work on problem solving 
(see [54]). Simon was working on design cognition not long after the “cognitive 
revolution” of the 1950s within psychology (in fact, he was a central figure in
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the movement). The dominant view of the mind at the time was as a symbolic 
information processor. Simon was a proponent of this view, and he saw design 
cognition as a form of heuristic search carried out by an information processing 
system. In this view, the logic of design involves finding alternatives within a space 
of possibilities while using certain strategies to manage the complexity of the space. 

Simon viewed the “shape of design” as essentially hierarchical. He embraced 
a systems perspective, in which the way to design for a complex problem is to 
decompose it into sub-problems or sub-functions. Once the complex problem is 
decomposed, “the design of each component can then be carried out with some 
degree of independence of the design of others” [73]. He viewed the design process 
as involving, “first, the generation of alternatives and, then, the testing of these 
alternatives against a whole array of requirements and constraints” [73]. He also 
had ideas for how to sequence activities within the design process that were inspired 
by how computer programs can engage in top-down programming and resource 
allocation. Stated inspirations for his theory of design include decision theory, 
control theory, dynamic programming, heuristic search and means-end analysis, 
resource allocation, and hierarchical decomposition. 

Overall, Simon’s view of design is formal, objective, and computational. He was 
inspired by utility theory and statistical decision theory as logical frameworks for 
rational choice among alternatives within a design space. He recognized this choice 
could not be optimized, instead advocating for satisficing [72] as the dominant 
heuristic. He thought of design problems mechanistically, as systems of interrelated 
parts that could be broken down, solved, and put back together again. The cognitive 
acts involved in these processes were essentially part of a heuristic search process, 
with the aim of deducing which of the available alternatives satisfies the given design 
criteria within a set of constraints. 

8.2.2 Design as Reflective Practice 

Donald Schön presented the most well-known alternative to Simon’s problem 
solving view of design in his book The Reflective Practitioner [66] and a series 
of subsequent papers. Schön rejected the view of design as an information pro-
cessing or heuristic search problem, instead positioning it as a form of making 
in which design cognition is fundamentally transactional in nature, unfolding as 
a conversation with the materials of the design situation [67, 68]. He drew on 
Nelson Goodman’s notion of worldmaking [25], which posits that people are 
continuously making and maintaining the worlds that are matched with their 
professional knowledge. People have “particular, professional ways of seeing their 
world and a way of constructing and maintaining the world as they see it” [66]. 
According to Schön, the designer does not mainly search through a solution space; 
rather, the designer actively structures the space by framing it, determining which 
things to attend to, and imposing their view of the world on it—in this view, design 
is a much more constructive kind of enterprise than the view put forward by Simon.
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Table 8.1 Two paradigms of design cognition compared. Adapted from Dorst and Dijkhuis [22] 

Rational problem solving Reflection in action 

Designer Information processor Person constructing reality 

Design Problem Ill defined, unstructured Essentially unique 

Design Process Heuristic search Reflective conversation 

Design Knowledge Laws, rules, procedures Precedent, experience 

Design Decisions Rational, objective decisions Personal, tacit judgments 

Example/model Optimization theory Professional artistry 

Schön argued that the problem solving view is accurate only when ends are fixed 
and clear, which is not typical of design problems. He pushed back against the 
“technical rationality” of the problem solving view, noting that the central problem 
setting work of the designer is not technical: “it is rather through the non-technical 
process of framing the problematic situation that we may organize and clarify both 
the ends to be achieved and the possible means of achieving them” [66]. This 
kind of framing work falls outside the scope of the problem solving view, yet it 
constitutes a large part of the cognitive work of designing. Designers “name and 
frame” problems, using their professional judgment to assess particular situations 
and identify the problem or opportunity to be addressed. These situations tend to 
be unique, complex, and dynamic—thus not well suited to the simple application of 
theoretical knowledge to the situation at hand. 

One of Schön’s critiques of the problem solving view is that it is too narrow 
and does not capture much of what actually happens in design. Beyond this scope 
issue, however, there is a subtler distinction in the nature of the cognitive acts being 
carried out. Simon’s view suggests that designers plan and select from alternatives 
systematically, sometimes iteratively and in parallel, eventually finding a solution 
that fits the design criteria. Schön’s view is that cognitive acts are much more 
contingent and situated. The designer engages in a process of “seeing-moving-
seeing,” consisting of action sequences where there are unintended consequences 
of each move that is made. From this perspective, the design process is essentially a 
conversational structure, where, as in a conversation between friends, there is no 
way to predict each turn the conversation will take. It is unpredictable yet still 
disciplined. It does not follow a pre-determined process, but rather reacts to the 
needs of the situation given the professional knowledge of the designer. Table 8.1, 
adapted from a similar table by Dorst and Dijkhuis [22], summarizes the two 
paradigms and some of their key differences. 

8.3 Attempts at Integration 

While design as problem solving and design as reflective practice have been widely 
acknowledged as two radically different, competing paradigms, there have been 
multiple attempts to integrate them—or at least see value in each. Dorst suggests
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that although these two paradigms “are on opposite sides of a deep schism that runs 
through science and philosophy” [21], they both can be valuable in understanding 
design. Both Simon and Schön did not pay enough attention to the structure of 
design problems, asserts Dorst, and by doing so we can see how both paradigms can 
describe a single design process [20]. Dorst posits that rational problem solving “is 
better for describing the more determined problem stretches of problem solving, and 
a variant of reflective practice, with its sensitivity to interpretation and situatedness, 
could be used to pinpoint the structure in the underdetermined episodes of design 
thinking, especially the moments of ‘breakdown’ (or ‘reframing’)” [20]. In one 
study, Dorst and Dijkhuis [22] attempted to describe an industrial design process 
using the two paradigms, with a focus on how closely they matched the experiences 
of the designers. They concluded that the rational problem solving view works well 
when design problems are clear-cut—but not otherwise. They also concluded that 
the reflective practice view does not offer as much descriptive precision and rigor, 
but it more closely matches the actual experiences of designers and provides a better 
description of both the design process and its content. 

Visser has proposed a similar approach, noting that “design involves problem 
solving, but that design is not (only) problem solving” [80]. However, although 
Visser acknowledges the value in Simon’s perspective, she also suggests that Simon 
“misrepresented” design in six key ways, including that his position overestimated 
the importance of problem decomposition, the importance of search, and the 
importance of means-end analysis as cognitive aspects of design. Visser suggests 
Simon’s misrepresentations are due to his proclivity to view engineering as the 
prototypical design discipline, and in doing so he neglects the wide diversity of 
design traditions. Visser believes not only that situated perspectives on design 
cognition are essential, as in Schön’s view, but also that Schön’s work lacked some 
precision that has since been improved by others (e.g., [1]). Visser ultimately notes 
that while the problem solving approach does have value, the situated approach “has 
in principle the potential to propose a more appropriate view on design” [80]. 

More recently, Hatchuel has argued that Simon’s attempts to develop a theory of 
design cognition were left unfinished [30]. Inspired by Simon’s famous concept of 
bounded rationality, Hatchuel proposed the concept of “expandable rationality” as a 
paradigm that addresses some of Simon’s shortcomings. This topic will be addressed 
in more detail in Sect. 8.4.2 in the context of automated visualization design. 

8.3.1 Philosophical Considerations 

Despite attempts to integrate the two paradigms in pragmatically useful ways, 
there are still fundamental differences between them that are not easy to rectify. 
These issues are related to much bigger philosophical arguments in cognitive 
science about the nature of symbolic information processing in complex real-world 
situations [77, 78] and to debates about epistemology in science and design. Each 
of these paradigms is built on an underlying philosophical view of knowledge
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and of the world. Simon’s perspective is predominately positivist, as evidenced 
by his emphasis on empiricism, logic, and objectivity. He was influenced by 
computational metaphors of information processing psychology, which view the 
mind as essentially a disembodied information processor. Simon was either not 
aware of or dismissed contemporary work arguing that knowledge in general is 
essentially personal and tacit [60, 61] and that design knowledge in particular 
relies on social and political judgments [64]. Schön explicitly rejected the positivist 
epistemology of Simon and instead built his perspective from a constructivist 
orientation [34]. Schön embraced the personal and tacit nature of knowledge and 
explicitly rejected the idea that design knowledge could be fully codified in any 
objective manner [68]. 

There is no hope to rectify these epistemological issues here, and the philosoph-
ical debates are somewhat removed from data visualization research and practice. 
However, these differences do have implications for data visualization. For instance, 
one difference deals with how designers make decisions as they move through 
their process. I have previously interviewed data visualization practitioners to 
understand design practice as described in their own terms (see [55–58]). During 
these conversations, it was abundantly clear from their descriptions that judgments, 
rather than formal decisions, were essential cognitive acts that drove their design 
process. Practitioners described engaging in judgements all the time—often in 
overlapping, layered ways [56]—and engaging in logical decision-making processes 
and search strategies very rarely if at all. This reliance on professional judgment has 
been noted elsewhere—e.g., among data analysts [3], interaction designers [40], and 
instructional designers [27]. 

Simon’s view of design cognition rejects judgment as a legitimate cognitive act. 
He instead views the cognitive acts of design as involving formal logic and rational 
search strategies that in theory and practice can be fully codified. He wrote in praise 
of computer programs that could fully represent complex design processes, where 
“there is no question . . . of  the  design  process hiding behind the cloak of ‘judgment’ 
or ‘experience’.” Simon viewed judgment with suspicion, as if any decision-making 
processes that are rigorous should essentially be separable from the decision-maker 
and thus be amenable to codification in formal language. I have previously written 
about how a concept like chartjunk is used by practitioners in personal, contextually 
relevant ways [57]. It appears unlikely that the use of such a concept could be 
codified in a rule-based prescriptive manner. There is evidence that effective design 
relies on personal, tacit, situated knowledge—the kind of knowledge that cannot 
be articulated and codified. For instance, when discussing the notion of chartjunk 
with visualization practitioners, its conceptualization, interpretation, and application 
were all very much tied to the individual designer and their judgments about the 
design situation [57]. In recounted situations, designers made judgments that were 
effective, yet there was no apparent procedural explication of the entire process 
behind the design outcomes. The personal, situated, and tacit nature of design 
judgments has been demonstrated in other design fields, including instructional 
design [27] and interaction design [75].
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On the role of judgment in design cognition, it appears that Simon was mistaken. 
Yet the positivist orientation in general and the rational problem solving view in 
particular are still very popular in STEM fields. Meyer and Dykes [47] have recently 
written about the positivist leanings of the visualization and computer science 
communities. Scholars in other fields have written about the need for recognizing 
epistemological issues in the use of data and visualizations (e.g., Drucker [23] in  
the humanities). Schön [67] pointed out the dominance of positivism in academia 
and in the professional schools, referring to the dominant epistemology as technical 
rationality. From this standpoint, the kinds of knowledge that are valued are general, 
objective, and abstract. Many academics in science and technology fields learn that 
these characteristics are the hallmarks of good research. Herein lies the consequence 
of adopting, even unconsciously, one of these underlying philosophical orientations. 
If the researchers are trained in an environment embracing technical rationality, they 
will likely strive to generate knowledge that is abstract, objective, and general. Even 
while doing empirical work, they may only see that which is abstract, objective, 
and general because that is what they have learned to recognize as valuable. The 
philosophical orientation can be reinforced even through empirical investigation 
because it acts as lens through which the researcher interprets the world. 

The issue of philosophical orientation is of course a very general one, so 
what does it mean for visualization researchers? If the field is primarily positivist 
in orientation, researchers are likely to gravitate toward the rational problem 
solving view because it claims to be objective and systematic. They will then 
view visualization design primarily as a heuristic search problem carried out 
by designers as information processors. If researchers do not recognize design 
cognition as comprising personal and tacit forms of knowledge, they will not 
develop a sufficient understanding of how design is actually practiced and may not 
be able to train visualization designers effectively. While these are some generic 
implications of adopting one paradigm—most likely to be the rational problem 
solving paradigm in the visualization community—I attempt to elaborate some more 
specific implications in the following section. 

8.4 Implications for Data Visualization 

The way that design cognition is construed is not simply a matter of abstract intellec-
tual debate and has many—often subtle—consequences for visualization research, 
practice, and training. In the following sections, I discuss some implications for 
defining, automating, modeling, and teaching data visualization design.
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8.4.1 Defining Design for Data Visualization 

Addressing many of the challenges and differences discussed in this chapter rests 
on determining what kind of activity design is considered to be. The question of 
what constitutes design is inevitable but not easy to answer. There are the well-
known generic answers, like Simon’s devising “courses of action aimed at changing 
existing situations into preferred ones” [73]. Nelson and Stolterman promote design 
as a “third way,” distinct from science and art, describing it as “the ability to 
imagine that-which-does-not-yet-exist, to make it appear in concrete form as a new, 
purposeful addition to the real world” [53]. Regarding visualization specifically, van 
de Moere and Purchase draw from multiple definitions of design to emphasize the 
creative aspects of design and the personal role of the designer in shaping the design 
process [50]. In their influential paper on design study methodology, Sedlmair et al. 
[70] define design as the “creative process of searching through a vast space of 
possibilities to select one of many possible good choices from the backdrop of the 
far larger set of bad choices.” This definition is closely aligned with the rational 
problem solving view of Simon described above. The constructive, situated view of 
designing is not well articulated in the core visualization literature, although there 
are instances of this view on visualization design in the digital humanities (e.g., 
[17, 23]). 

Providing an agreed-upon definition of design for data visualization is likely 
an impossible goal. One possible way to achieve consensus is to focus on the 
guiding values or ideals of the discipline, as has been done recently for interaction 
design [32]. I will not attempt to do that here but will suggest that any agreement 
about the nature of design cognition needs to rest on some degree of consensus 
about the nature of design broadly construed. For instance, if design is limited 
to the selection of visualization and interaction techniques from a known set of 
possibilities, implications are different from the view where design includes the 
influence of personal competencies and philosophical commitments, the role of tacit 
knowledge, the reliance on deep patterns of personal experience, and the real-world 
concerns of managing clients, expectations, software tools, deadlines, budgets, and 
so on. 

Any definition of design should be informed by the cognitive and other con-
siderations that go into the work of doing design. Whether design cognition is 
fundamentally rational problem solving or reflective practice necessarily influences 
the definition of design. Is design primarily about discovery, as Simon’s view might 
suggest, or about constructing the reality of the situation, as Schön’s view suggests? 
Design theorists Nelson and Stolterman reject the problem solving view of design, 
noting its focus being limited to “that-which-is (description and explanation)” 
instead of “that-which-ought-to-be (ethics and morality), and . . . that-which-is-
desired (desiderata)” [53]. Adopting any view of visualization design in general, 
and design cognition in particular, will influence the view of other important topics 
like automated design, design models, and design education, each of which will be 
discussed in the following sections.
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8.4.2 Automated Visualization Design 

One topic for which design cognition has deep implications—in ways that may not 
be immediately obvious—is automated visualization design. Since the early days of 
AI, the researchers have had a desire to model human cognition computationally, 
with the goal of either fully or partially automating cognitive processes and human 
knowledge. One particular instance of this is in modeling design knowledge and 
processes with the goal of automating design. There are implications for the 
success of this vision, however, based on the true nature of design cognition. For 
instance, if human cognition operates fundamentally in a symbolic information 
processing mode—which is the basic thrust of information processing psychology 
and Simon’s theory of problem solving—then it should be possible to replicate 
cognitive processes computationally. However, if symbolic information processing 
is not the right metaphor or is at least not the right one for design cognition, it may 
not be possible to fully automate the relevant knowledge and cognitive processes for 
design. 

Within the visualization literature, the goal of automating design has a long his-
tory. The most well-known early work was from Mackinlay on his presentation tool 
APT [42], which viewed the design of graphical representations as fundamentally 
a search problem aiming to optimize effectiveness and expressiveness. Subsequent 
research in this space has informed the design of systems like Tableau [41], SAGE 
[49], Voyager [83], Draco [51], and numerous others in recent years. 

These automated tools appear to be framed around two visions. One vision is to 
assist analysts in understanding their data. Because analysts do not have expertise in 
visualization design, it can be difficult for them to create useful visualizations. As 
a result, they will often turn to default charting options in tools like Excel, which 
may be unhelpful or even misleading. If visualizations instead can be recommended 
to them based on characteristics of the data and the analyst’s goals, the analysis 
situation can be greatly improved. This is the stated intention behind techniques 
like Tableau’s “Show Me” [41] and more recent work on query languages like 
CompassQL [84]. Another vision for these automated tools is to assist the designers 
in creating visualizations based on codified design knowledge. This is a perspective 
taken by recent systems like Draco[51], in which the aim is to formally model 
design knowledge with hard and soft constraints over logical facts. This vision 
embraces the “application” view described previously in Sect. 8.1.1—researchers 
conduct empirical studies to generate design knowledge, which then gets applied in 
practice. One stated motivation for creating these systems is that there is a gap that 
needs to be filled between the researcher-generated knowledge and its application 
in practice. 

There is no doubt that automated visualization design tools are useful, especially 
as aids to analysts who do not have adequate visualization design knowledge. In 
such cases, however, the “design” work that is being done is narrow with respect to 
the whole range of considerations that go into real-world design practice [55]. The 
extent to which visualization design can be automated depends in part on the nature
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of design cognition, design knowledge, and design practice. If the complexity, 
uncertainty, and messiness of real-world design is not considered, computational 
tools can automate only small parts of the design process. Here, we see again 
implications of which paradigm(s) of design cognition is embraced. If design 
cognition is fundamentally symbolic information processing, as in Simon’s view, 
design knowledge and processes are separable from the designer and can be codified 
as such. Based on the reflective practice view, however, an expectation for fully 
automated design is unrealistic even in principle. Unless artificial intelligence can 
develop the subtle appreciative and imaginative abilities of humans, there is no 
hope for design to be fully automated. On this matter, Schön [68] argues that 
computers would need to achieve phenomenological and functional equivalence 
with humans to be able to reproduce essential aspects of design cognition, including 
the continual, subjective appreciation of a situation and the envisioning of future 
design worlds. Previous work by Alspaugh et al. [3] has surfaced similar concerns 
from professional data analysts about the role of automation in data wrangling and 
visualization. 

A perspective that may be helpful here is Hatchuel’s concept of “expanded 
rationality” [30], briefly described previously in Sect. 8.3. Hatchuel argues that true 
design problems involve infinite and non-countable sets, for which heuristic search 
is not an appropriate strategy. Bounded rationality does not help with these kinds 
of situations because true design situations are infinitely expandable. For instance, 
when a client approaches a designer and says “help me see something useful in 
my sales data,” there is no bounded problem space that can be computationally 
exhausted. The concept of “useful” is infinitely expandable, and it is the task of 
the designer to frame the problem space and make the design task manageable. The 
designer may interview the client and other stakeholders, for instance, and determine 
that what is useful is to see the growth of certain market segments in relation 
to political or natural events. This is very much in line with Schön’s emphasis 
on the active, constructive nature of framing the problem to be addressed. Even 
in principle, infinite time and computing resources could not explore the space. 
Hatchuel’s theory argues that a situation is a “real design problem” only if the initial 
concepts allow for unexpected expansion. The designer makes use of their creative, 
imaginative, and appreciative abilities to do this work. If there is no opportunity for 
expansion, Hatchuel argues there is no real design problem—only a regular problem 
to be solved. This view may provide conceptual support for the issue of automation 
in design, as it offers a useful description of what distinguishes design from typical 
problem solving. 

Aside from the cognitive processes involved in design, a central topic for 
understanding the possibilities of automation in design is design knowledge. If the  
design involves knowledge that is—even in part—fundamentally irreducible, it is 
not possible to codify. There is much evidence that design knowledge is holistic 
and personal in the ways that Polanyi described scientific knowledge [60]. Certainly 
some design knowledge is objective and able to be codified, but if critical pieces 
of knowledge are personal and tacit, there is little hope to fully automate design.
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The nature of design knowledge has been written about extensively by others and is 
beyond the scope of this chapter. 

When it comes to automated visualization design, there are at least two key 
topics that must be encountered. First, if design cognition is expansive in nature, 
computational search processes are not sufficient for fully automating design—even 
in principle. Second, if design knowledge is personal and tacit, it cannot be fully 
codified. Some aspects of design can be automated, especially those that deal with 
heuristic search through spaces of known solutions and those that deal with objective 
kinds of knowledge like laws and principles. However, it is important to recognize 
that these cover only a portion of what is involved in real-world design practice. The 
important question is not whether design can be fully automated, but rather: what 
are the cognitive processes and types of knowledge that can be codified and how 
should tools work in concert with designers to leverage computational and human 
strengths in design? 

8.4.3 Visualization Design Models and Frameworks 

Similar to the topic of automated visualization design is the view of design models 
and frameworks in the visualization literature. Numerous frameworks and models 
have been proposed to describe the design process and to provide researchers and 
designers with advice and guidance. For instance, popular decision models include 
the Nested Model [52] and its Blocks and Guidelines extension [48]. Popular 
process models include the nine-stage framework in the Design Study Methodology 
[70], the Design Activity Framework [45], and others [26, 44, 69, 71]. 

Here, we can again ask what role the underlying paradigms of design cognition 
have played in the development of these models and frameworks. Most appear 
to be closer in spirit to Simon’s view of design cognition—they are intended to 
explicate knowledge, support decision-making, and enable a rational search process 
through a space of known possibilities. They do not appear to align as much with 
Schön’s reflective practice view, in which we would expect to see descriptions 
of the situated, transactional nature of design—e.g., problem framing and setting, 
imagination, judgment, and contingent means of navigating the design situation. 
We would also expect to see descriptions of reflection in action taking place. 
These existing models generally do value reflection, but mainly as a mechanism 
for making contributions back to the research community and not as an essential 
cognitive act that aids movement through the design process. For instance, the nine-
stage framework [70] has as its 8th stage “reflection.” By this is meant reflection 
after the design process, on what was done and how it relates to the research 
landscape, rather than during design, as an essential and continual feature. In 
their paper “Reflection on Reflection in Applied Visualization Research,” Meyer 
and Dykes [46] have noted how there is a “bias towards post-study reflection,” 
recommending “a more structured and purposeful approach to reflection throughout 
the entire design process.” Additionally, many of these models and frameworks
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acknowledge the ill-structured and wicked nature of design problems. However, 
Simon acknowledged this as well [74] but still promoted the rational problem 
solving view. Referring to design as ill-structured, wicked, messy, complex, or 
iterative does not indicate which paradigm is being adopted. My goal here is not 
to criticize existing frameworks, but rather to raise the question of how they relate 
to paradigms of design cognition. 

The models and frameworks discussed above have not explicitly engaged with 
paradigms of design cognition to motivate their development, perhaps due to a 
lack of awareness, as it is largely an unknown topic within the visualization 
literature. However, these models and frameworks rely on assumptions about 
cognitive aspects of design, whether they are explicitly acknowledged or not. 
These assumptions are of course influenced by the primary philosophical paradigms 
within the visualization field, which Meyer and Dykes [47] have recently argued is 
dominated by positivism. Furthermore, these models have largely been developed 
for the academic research community. Here there may be somewhat of a self-
fulfilling prophecy taking place. If a research community adopts one paradigm 
of design cognition—unconsciously or not—it will value models that conform to 
that paradigm. For example, a positivist community will value objective, empirical, 
abstract knowledge; because that is what is valued, researchers will attempt to 
develop abstract, general models; and these models will then be evaluated on the 
same positivist criteria that led to their development. Finally, it is important to note 
that these models and frameworks have been generated and used within the research 
community, and their applicability and relevance to real-world practice is uncertain 
[55]. The cognitive acts of researchers doing design work and practitioners doing 
design work likely not only have some differences but also likely share foundational 
elements. However, the nature of these relationships has not been investigated and 
could be a topic for future inquiry. 

8.4.4 Visualization Education 

The view of design cognition that is adopted by educators has significant impli-
cations for data visualization pedagogy. For instance, consider the “application” 
view described previously in Sect. 8.1.1. Within this perspective, there is an 
implicit hierarchy of knowledge. The foundation of the hierarchy is basic, scientific 
knowledge. This knowledge then gets mixed with more applied or concrete types 
of knowledge that are connected to specific problems that need to be solved. The 
way that many educators teach in universities essentially follows this model. First, 
students attend lectures that cover the theory, then they subsequently “apply” the 
knowledge through labs or assignments. This model makes sense if design really 
is an application of basic knowledge to specific problems. It fits squarely within 
the positivist landscape of the majority of STEM disciplines. The view of the 
cognitive work that is taking place also aligns with Simon’s view of design, where 
designers are engaging in heuristic search activities in an attempt to select and apply
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a good combination of components from the solution space. If this model is not 
accurate, however, the pedagogical approach may not be so effective. Plenty has 
been written on the topic of removing lectures and making classes more “active,” 
often by using “flipped” modes of instruction and various “hands-on” activities 
within the classroom. These approaches may make instructors feel modern, but 
if they are not appropriate for the intended activity the students are training 
for, they are ultimately not very useful. Sometimes lectures are the appropriate 
mode of instruction, especially if students really do simply need to learn basic, 
abstract knowledge. The important question is what kind of activity is design? Is it 
essentially a form of application or is there more to it? And what is the appropriate 
mode of instruction for training designers? 

I believe the contents of this chapter have demonstrated that visualization design 
is not only about application (although it may involve application), and it is not only 
a rational problem solving activity (although it may involve it too). Explicating a 
pedagogy of data visualization is much beyond the scope of this chapter, but a few 
points can be made here. If data visualization design is not simply about application, 
if its cognitive aspects involve making, expansive thinking, and the envisioning 
of future worlds, and if its activity is fundamentally transactional in nature, then 
students need to be supported in these activities with the right instructional models. 
One such pedagogical model is that of the design studio, a model that has a long 
history in art and design. Design studios position the role of an instructor as 
more of a coach than a lecturer, where students learn by doing, and the coaches 
provide demonstrations, critiques, and just-in-time instruction as means of formative 
feedback. Studio pedagogy tends to be more constructionist-oriented, aligning with 
the reflective practice view of design and not as strongly with the application 
view (although, as discussed in Sect. 8.3, it is important to remember that these 
are not mutually exclusive views in their entirety). In the studio, students engage 
with the complexity and messiness of design, typically relying more on trial-and-
error and just-in-time learning than repetition and reinforcement toward the correct 
application of abstract principles. The goal of studio pedagogy is to prepare students 
to handle the complexity, uncertainty, and messiness of real-world practice rather 
than providing them with prescriptive procedures to follow or abstract theory to 
apply. In Schön’s view, design students need tools for reflection that allow them to 
appropriately face each unique design situation with all its complexity and richness 
under consideration. Based on this, Stolterman [75] suggests that design education 
should focus on training designers to be “prepared-for-action” and not “guided-in-
action.” 

Here the implications of adopting one paradigm of design cognition should again 
be apparent. If the cognitive acts of designing are akin to rational problem solving, 
where logic and procedural thinking are valued, the design studio and all of its 
messiness may not be as effective as a traditional lecture and lab format. But if 
the cognitive acts of designing are more transactional in nature, where designers 
need to “converse” with the materials of a particular situation, and receive just-
in-time instruction and critique, the design studio appears to be a much better fit. 
Although much more can be said about various approaches to design pedagogy,
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such discussion goes beyond the scope of this chapter (see [6, 7, 28, 29, 38, 63, 82] 
for more depth on studio-based pedagogy in different design disciplines). 

8.5 Summary 

Design cognition has not received much attention in the visualization literature. 
In this chapter, I introduced some aspects of design cognition and described their 
relevance for data visualization. The discussion has been built largely on the 
two historically dominant paradigms of rational problem solving and reflective 
practice. These paradigms provide different pictures of what design cognition is, 
and I have attempted to describe implications for four data visualization topics: 
defining, automating, modeling, and teaching data visualization design. I posit that 
the visualization community embraces the rational problem solving view of design 
more than the reflective practice one, although future research can investigate this 
claim in more detail. Embracing the reflective practice paradigm may lead to more 
comprehensive knowledge of data visualization design and open new opportunities 
for research and teaching. However, even without embracing a particular paradigm, 
any focus on design cognition will likely be valuable for better understanding and 
teaching data visualization design. 
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Chapter 9 
Visualization Psychology: Foundations 
for an Interdisciplinary Research 
Program 

Amy Rae Fox and James D. Hollan 

Abstract What might a discipline of Visualization Psychology look like? If 
research on the psychological aspects of visualization were to coalesce, in the 
sense of a Lakatosian research program, what refutation-resistant theoretical com-
mitments would magnetize its “hard core”? In this chapter, we argue that any 
interdisciplinary inquiry concerned with psychological aspects of visualization 
should situate its phenomena in the broader context of external representation, as 
a (triadic) semiotic activity achieved via information processing in a distributed 
cognitive system. 

9.1 Introduction 

Our goal in this chapter is not to provide a grand unified theory of visualization, nor 
to review all relevant work in the social and behavioral sciences. Rather, we offer 
a conceptual framework: a series of theoretical premises we argue should form the 
foundation of any interdisciplinary inquiry concerned with psychological aspects 
of visualization. We start by addressing the virtue of a hypothetical Visualization 
Psychology, arguing that the phenomenon of visualization is a fertile laboratory 
for exploring human cognition, that engineering and design-driven research can 
be improved via appropriate grounding in theories of perception and cognition, 
and that well-structured collaborations across disciplinary boundaries can foster 
a virtuous cycle beneficial to both traditions of research. In Sect. 9.3, we argue 
that such inquiry should situate visualization in the broader context of external 
representation (Sect. 9.3.1) as a (triadic) semiotic activity (Sect. 9.3.2) involving 
information processing (Sect. 9.3.3) in a distributed cognitive system (Sect. 9.3.4). 
In Sect. 9.4, we illustrate how this framework can be applied in both empirical and 
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theoretical contexts, before concluding with a discussion of the role of Psychology 
in the history (and future) of Visualization. 

9.2 Why Visualization Needs Psychology 

The first workshop on Visualization Psychology was held in conjunction with the 
IEEE VIS conference in 2020, with the following Call for Papers (CFP) [71]: 

Before 2010, each VIS conference typically featured 0–2 papers on empirical 
studies. The VisWeek 2010 in Salt Lake City became a turning point, and 
since then more and more empirical study papers have been presented at 
VIS. Between 2016 and 2019, there were some 60 empirical study papers 
in VIS/TVCG tracks. Many young talents who are knowledgeable in both 
VIS and psychology emerged in the VIS community, while many colleagues 
in psychology are authoring and co-authoring such papers and attending VIS 
conferences. It is therefore timely to ask the two communities: is there a need 
for Visualization Psychology as a new interdisciplinary subject? 

There are many branches of applied psychology, such as clinical psychol-
ogy, counseling psychology, educational psychology, forensic psychology, 
health psychology, industrial–organizational psychology, legal psychology, 
media psychology, music psychology, occupational psychology, sports psy-
chology, and so on. Almost all of these are widely recognized academic 
subjects and have their own conferences and journals. Since interactive 
visualization and visual analytics encompass most human-centric processes 
in data science and real-world data intelligence workflows, many will argue 
for the necessity and feasibility for developing Visualization Psychology in a 
coherent and organized manner. 

This is the first workshop that will enable the experts in VIS and psy-
chology to define the scope of this new subject of Visualization Psychology 
collectively and stimulate new research directions and activities in both fields. 
The goals of the workshop are:

• To provide researchers in VIS with a significant platform to develop 
their theories and experiments in addition to acquiring knowledge from 
psychology

• To broaden the scope of empirical research in VIS to involve more 
cognitive aspects in addition to considering visualization a vision or 
perception problem

• To enable researchers in psychology to explore VIS as a rich playground 
and carry out research beyond the existing molds 

(continued)
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• To enable the development of the young talents in VIS and psychology 
through the development of a new interdisciplinary subject and the plat-
forms for research communication, publications, and collaboration 

This CFP solicits an intersection between two communities: “Psychology” and 
“VIS.” In this context we can pragmatically identify the VIS community as scholars 
affiliated with publishing venues such as the VIS conference series1 and the journal 
IEEE Transactions on Visualization and Computer Graphics. This is a community 
intellectually and institutionally grounded in the discipline of Computer Science, 
closely related to (for others, a subset of) Human–Computer Interaction (HCI). The 
term “visualization research” then is used to refer to work in the VIS community, 
historically centered in engineering and design perspectives: developing tools to 
solve problems. 

Psychology is a much older, more expansive discipline of science, dating back 
to the mid-nineteenth century. Let us say for the sake of argument that our goal 
is to engage scholars of psychology already publishing in VIS venues and others 
whose work is sufficiently relevant to visualization phenomena. For this, we might 
constrain “the psychology community” to be scholars of the cognitive, perceptual, or 
educational branches of experimental psychology, as well as vision science, learning 
science and cognitive science, whose phenomena of interest include human interac-
tion with visual-spatial representations of information.2 Psychological research in 
this sense will include work published in venues outside VIS (such as journals and 
conferences of the Cognitive Science Society, Psychonomic Society, Association for 
Psychological Science, and International Society for the Learning Sciences, among 
others). For brevity, we use the term psychologist as a placeholder for members of 
this more diverse disciplinary milieu. 

What might the goals of this new interdisciplinary community be? The following 
claims are made explicit in the VisPsych CFP and offer a first approximation of 
what a Visualization Psychology might hope to accomplish: 

1. Visualization research should be informed by psychological theories. 
2. Visualization research should emphasize cognitive as well as perceptual factors. 
3. Visualization phenomena offer a rich playground for further developing psycho-

logical theory.

1 Self-identified as the “premier forum for advances in visualization and visual analytics,” VIS is 
sponsored by the IEEE (The Institute of Electrical and Electronics Engineers) Computer Society 
and Technical Committee (special interest group) on Visualization and Graphics (TCVG). 
2 One might also find research detailing interaction with graphics in other applied branches of 
Psychology—the use of multimedia graphics in the courtroom, for example—however the theories, 
models, and frameworks governing the basic science of such occurrences would likely come from 
cognitive, educational, or perceptual psychology. 
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The Role of Psychological Theory We suggest that the first point is true by virtue 
of epistemic relevance: the explanatory power and design impact of visualization 
research is improved when grounded in psychological theory, just as human 
interaction with a computer is better explained by theories of human psychology 
than formalisms governing the algorithms of the machine. For brevity, we use 
the term psychological as an umbrella for human aspects of interaction with 
visualizations; for example, how a reader perceives, forms a judgment from, or 
solves a problem with a visualization. This is in contrast to non-psychological 
questions, such as defining the algorithm for transforming a set of data into a 
particular representational form or how that computational system is engineered 
to afford input/output interaction. The latter questions may be required to enable 
the visualization phenomenon but neither necessitate nor explain human interaction 
with it. In this way research in visualization is like research in human–computer 
interaction. Psychological theories are needed to inform the design and evaluation 
of computational systems and to understand the dynamics of human interaction 
with them, but so too are contributions from the formal/mathematical science and 
engineering of computing. This is to say that VIS need not be subsumed into 
Psychology. Like HCI, visualization is a rich theoretical and empirical subject 
matter for interdisciplinary collaboration. 

Situating Perception and Cognition The claim that empirical research in visu-
alization should include cognitive in addition to perceptual theory is also trivially 
true, insofar as we are concerned with “cognitive” phenomena or behavior (i.e., 
beyond perceptual judgments). This is a question of levels of analysis and scope of 
phenomena. More often than not, empirical research in VIS (particularly investiga-
tions that center on the efficacy of some type of visualization or interactions with 
a visualization system) should be concerned with cognitive rather than perceptual 
phenomena. Accepting that the theoretical boundaries between perception and 
cognition are fuzzy, if we adopt an information-processing perspective from main-
stream Cognitive Science, we can reasonably construe perception as some subset 
of cognition, concerned with stimulus-driven behavior, while the term cognition 
implies “higher order” processing, the influence of prior knowledge, or “what one 
does with” perceptual input. An empirical study with a task operationalized to 
measure constructs approximating perceptual processing is likely aimed at building 
and testing basic theory in perception, rather than evaluating the efficacy of a 
particular visualization. 

This point is exemplified by the widespread misapplication of classic graphical 
perception studies by Bell Labs statisticians William Cleveland and Robert McGill 
(see [18–20]). When presented as stimulus a simplified statistical graph (e.g., a pie 
or divided bar chart, each with two segments marked with a dot), experimental 
subjects were asked to indicate “what percentage the smaller is of the larger”: 
a perceptual judgment. The accuracy of subjects’ responses (with respect to 
mathematical ground-truth) was evaluated and used to derive a ranking of relative 
accuracy for graphical encodings. From these results, one could conclude it is more 
effective to represent the quantitative difference between two values as a bar chart,
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rather than a pie chart. Unfortunately, this work has been generalized by some 
to the design heuristic, “bar charts are better than pie charts.” If humans were 
perceptual computers with no prior knowledge, expertise, beliefs, or other individual 
differences, that might be the end of the story. However, a body of research in graph 
comprehension has demonstrated that if you use a different task in your study, 
for example, asking the graph reader to extract a specific value from the graph, 
to use it to make a decision, or perhaps a forecast, then the accuracy rankings 
do not necessarily hold (e.g., [63, 64]). This apparent contradiction arises from 
the insight that different task-demands require different “readings” of a graph: a 
(perceptual) judgment of relative size is different than extracting a data value which 
is different from detecting a trend, and so on. The more complex the behavioral 
task, the more “higher order” (i.e., resource-intensive, implicating prior knowledge) 
processing is required. While it would be appropriate to apply perceptual accuracy 
heuristics to design, for example, a simple graphic in a newspaper illustrating 
the quantitative month-over-month change in some economic report, it would be 
insufficient to rely solely on these heuristics to guide design of an interactive visual 
analytics system. Perceptual guidance for achieving simpler tasks is a useful starting 
point but does not encompass knowledge-driven interactions. Basic research on 
graph comprehension has clearly demonstrated that the effectiveness of graphical 
encodings arises not from the interaction of data and forms, but rather, data, forms, 
individuals, and tasks. This is not to say that perceptual processing is not relevant 
to complex cognitive activities or that there are no perceptual questions left to 
be answered. One of the most challenging, and in our view promising, areas ripe 
for theoretical development is along these fuzzy boundaries: exploring the factors 
that govern how stimulus-driven and knowledge-driven processes are integrated to 
produce behavior. 

Visualization and the Virtuous Cycle The claim that visualization phenomena 
offer opportunities for advancing psychological research can be demonstrated 
from evidence. Grammars and frameworks (especially [9, 54, 74]) designed by 
Computer Scientists and implemented as libraries and interactive systems have 
made computer-based data visualizations accessible for researchers as tools for 
data analysis and presentation. For those whose research involves empirical study 
of human–information interaction, these are also tools for generating stimuli. The 
situations in which the stimuli might be used—for example, studying how a graph is 
used to make a decision, how a student leverages a chart and accompanying text to 
learn a concept, or how an analyst uses an interactive system to make a forecast—are 
all enabled by technologies borne of Computer Science-based visualization and 
computer graphics research. In turn, research on the human aspects of how and why 
and to what effect individuals interact with visualizations provides guidance for 
the appropriate design of visualization systems. Technology inspires new human 
activity, which offers the psychologist new subjects of inquiry. As is often the 
case with technology-driven endeavors, Psychology and Computer Science stand 
in relationship as a virtuous cycle: a positive feedback loop where progress in 
each stands to both improve in quality and volume the progress of the other. The
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relationship between Psychology and VIS is the relationship between Psychology 
and broader Human–Computer Interaction—appropriate considering that VIS grew 
from and is largely considered a part of HCI. There is, in fact, so much “psychology” 
in HCI and VIS and it is challenging to know where (and if) we should draw 
meaningful boundaries. We return to this issue in Sect. 9.5. 

9.3 Elements of a Framework 

Lakatos’s idea is to construct a methodology of science, and with it a demarcation criterion, 
whose precepts are more in accordance with scientific practice. (. . . ) Instead of an individual  
falsifiable theory which ought to be rejected as soon as it is refuted, we have a sequence of 
falsifiable theories characterized by a shared hard core of central theses that are deemed 
irrefutable—or, at least, refutation-resistant—by methodological fiat. This sequence of 
theories constitutes a research program.—Musgrave and Pigden [44] 

One way to conceptualize the structure of a Visualization Psychology is in terms 
of a research program in the tradition of post-positivist philosopher of science of 
Imre Lakatos [76]. Lakatos was skeptical of Kuhn’s normative conception of science 
as progressing via successive stages where one research paradigm (i.e., a framework 
for approaching one’s subject matter) is replaced by another. Lakatos characterized 
the practice of science as altogether messier, with multiple competing paradigms 
operating in parallel, in nonlinear cycles of progression (making theoretical and 
empirical progress) and degeneration (stagnating, and/or questioning core claims). 
For Lakatos, a research program was characterized not by a singular method, 
model, or theory, but rather a collection of basic (and by convention irrefutable) 
assumptions shared by its community. This hard core of theoretical commitments 
is surrounded by a protective auxiliary belt of hypotheses that constitute the work 
of science. Investigators rely on the shared language and lenses of the hard core 
to generate hypotheses in the auxiliary belt that might be shaped into theories 
or broken down and replaced. Progress is made so long as the auxiliary belt 
grows: theoretically, by extending the scope of theory to new empirical domains, or 
empirically, by finding corroborating evidence for theoretical claims (see [3, 76]). 

What central theses—theoretical propositions resistant to refutation—might a 
Visualization Psychology have at its hard core? We propose a minimum of four 
central tenets. Individually, these ideas are not falsifiable theories, but rather 
perspectives and frameworks that have arisen from and give rise to empirically 
testable hypotheses. 

1. Visualization is external representation. Visualization (as artifact) and visual-
ization (as process) belong to the broader class of external representation. 

2. Meaning is constructed. Interacting with a visualization is not a passive 
transmission of meaning (e.g., “extracted” from the artifact), but rather an active, 
interpretive semiotic process where knowledge is constructed.
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3. Information is processed. Visualization is most effectively construed as the 
transmission of information across components of a system, via transformation 
between representational states. 

4. Cognition is distributed. Intelligent action with a visualization is a function of 
a distributed cognitive system comprised of human actors and material artifacts 
situated in relation to their spatio-temporal environment. 

We describe these perspectives in Sects. 9.3.1–9.3.4 and in Sect. 9.4 demonstrate 
how they can be applied in both empirical and theoretical research settings. 

9.3.1 Visualization is External Representation 

The language of representation is slippery and self-referencing. Shown a collection 
of marks on surfaces, you might label some as art, or pictures, others as diagrams, 
maps, or schematics, some charts, plots, or graphs, and others also as graphs, but you 
might use air quotes and call them “graph-theory graphs.” Some you will identify 
as writing and others, like writing but not—some peculiar or particular system of 
notation. The linguistic labels you apply to each marking likely depend on your 
disciplinary background and are neither exhaustive nor mutually exclusive. Which 
of these are visualizations? (Fig. 9.1). 

9.3.1.1 On Visualization 

Let us start with definitions put forth in prominent VIS texts. In their venerated 
compilation of papers and essays, Card et al. [11] define Information Visualization 
as “The use of computer-supported, interactive, visual representations of abstract 
data to amplify cognition” (pg. 7). Stephen Few offers a functional definition, 
characterizing data visualization as “an umbrella term to cover all types of visual 
representations that support the exploration, examination, and communication of 
data. Whatever the representation, as long as it’s visual, and whatever it represents, 
as long as it’s information, this constitutes data visualization” [24, pg.12]. 

Such inclusive specifications may be effective for teaching but are less suitable 
guides for scientific inquiry. From this heuristic, we might conclude the words on 
this page constitute a visualization—but they would not be considered so by most 
visualization practitioners. Why? Because visualizations are somehow graphic in 
nature; from Ware, “a graphical representation of data or concepts” [72, pg.2]. 
Ware highlights how the term has transitioned in conventional meaning from 
“constructing a visual image in the mind” to “an external artifact supporting
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Fig. 9.1 A group of visual-spatial external representations. (a) a conceptual diagram indicating 
key concepts in null hypothesis significance testing; (b) portion of the song ’You Are My 
Sunshine’ in guitar tabs notation; (c) Feynman diagram for an interaction between an electron 
and anti-electron with exchange of a photon; (d) schematic of a circuit depicting a 9V battery 
in configuration with a single resistor and LED; (e) tree diagram used in solving Bayesian 
reasoning problems; (f) Laban notation representing a ballet exercise; (g) boxplot depicting mean, 
interquartile range and outliers for 4 groups; (h) a figure from a neuroscience presentation that 
combines multiple representations of related phenomena to orient readers to both the research 
method and analysis of results; (i) an icon of an abacus-note that the object the icon represents 
would also be considered an external representation of number; (j) image of the words in a 
dictionary definition of the word chair (inspired by the conceptual art piece ’One and Three Chairs’ 
by Joseph Kosuth) 

decision making.” Bertin (in English translation [5]) also refers to graphic repre-
sentation, distinguishing this from relational imagery (e.g., art, photography) and 
mathematics (e.g., symbolic notation). In a more recent text, Munzner pragmatically 
characterizes the purpose of computer-based visualization systems as providing 
“visual representations of data sets designed to help people carry out tasks more 
effectively” [43, pg.1].
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If we start with the assertion that a visualization (noun) is a type of representation, 
then to arrive at a useful definition we should characterize the properties of what 
representations can be admitted to this type. An externally available representation 
is accessed via some sensory modality; that visualizations are subject to vision is the 
only shared property of the aforementioned definitions. Similarly, we lack clarity as 
to whether visualizations need to be graphic (or indeed, what being graphic entails), 
if they need to be interactive, generated by a computer, whether they can refer to 
any information, or only “data,” and perhaps only that which is deemed “abstract.” 
Alternatively, we can try to infer a shared conceptualization of such terms based 
on how a community organizes itself. VIS3 explores the sometimes fluid distinction 
within these properties in the organization of annual conference tracks, paper types, 
and sessions. Whether the referent of a visualization is abstract data or has some 
physical/geometric invariant is the (historical) distinction between the Information 
Visualization (InfoVIS) and Scientific Visualization (SciVIS) conferences. If the 
purpose of an artifact is to support an interactive, analytical process, then it 
would likely be called a visualization and fall into the Visual Analytics (VAST) 
conference. If the referent is more “conceptual” than data-driven, research is 
more likely to be published outside of VIS, such as in the (multidisciplinary) 
International Conference on the Theory and Application of Diagrams, and if the use 
of the representation is primarily for learning, then the research is likely evaluated 
in either disciplinary education (e.g., Chemistry Education, Math Education) or 
Learning Science. The number of paper types (and submissions) at VIS implicating 
computer systems, prototypes, and algorithms suggests a strong preference toward 
the computer as a presentation medium or “physical substrate.” Though there is 
exciting growth in the topic of data physicalization and exploration of alternative 
sensory modalities for representing data, this area has yet to emerge as a large 
enough topic to warrant its own conference session in the past five years. Research 
on data sonification or tactilization are more likely to be found in the broader ACM 
SIG-CHI or topical journal like ACM Transactions on Applied Perception. 

Definitions, as terminology, serve as tools for communicating and conceptual-
izing one’s subject matter [10]. We draw on these definitions of Information and 
Data Visualization, not in critique of their notable contributions, but rather to call 
attention to a puzzling inconsistency in the foundation of the field. Our objects of 
inquiry are altogether over-specified and under-defined. Which of the artifacts in 
Fig. 9.1 are visualizations? We argue that to the visualization psychologist, it should 
not really matter. They are all instances of the larger class: external representations. 
Just as psycholinguists are concerned with the psychological and neurobiological 
factors that enable humans to acquire, use, comprehend, and produce language (not 
English, or “languages using the roman alphabet,” or “languages written from left-
to-right”), visualization psychologists should be concerned with the factors that 
enable humans to make use of external representations (not just the “graphic,”

3 Referring to the annual IEEE combined conferences on Information Visualization (InfoVIS), 
Scientific Visualization (SciVIS), and Visual Analytics Science and Technology (VAST). 
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“data-driven,” or “computer generated” variety). In this sense, designers and 
engineers of visualization systems have the luxury of specialization. But insofar as 
we believe that the interaction with visualization relies on general purpose cognitive 
mechanisms, psychologists do not. To understand how these artifacts function—to 
study how they are used by humans to construct meaning in support of complex 
cognitive activities—we must climb up the ladder of abstraction. 

9.3.1.2 On External Representation 

The power of the unaided mind is highly overrated. Without external aids, memory, thought, 
and reasoning are all constrained. But human intelligence is highly flexible and adaptive, 
superb at inventing procedures and objects that overcome its own limits. The real powers 
come from devising external aids that enhance cognitive abilities. (. . . ) It is things that make  
us smart.—Norman [47, pg. 43] 

The term external representation came to prominence in the late 1970–80s, as 
the new discipline of Cognitive Science emerged from information-processing psy-
chology with a common focus on the existence and nature of mental representation 
(see [8, 38, 46, 49]). But when the researchers focused solely on the mental, they 
needed unnecessarily complex mechanisms to explain behavior. Although AI and 
the mental imagery debate would ensure that mental representation remained a focus 
of mainstream Cognitive Science, the need to distinguish internal from external 
meant the birth of a new research area. 

The complexity of external representation, however, was not immediately appre-
ciated. In his treatise on cognitive representation, Palmer argued that mental 
representations were “exceedingly complex and difficult to study,” so one might start 
with the examination of “noncognitive”4 representations, as they are “simple, and 
easy to study”5 [48, pg. 262]. Subsequent elaboration of representational systems 
demonstrated there is much to explore with respect to the nature and function of 
such “noncognitive” structures (see [37, 55]). 

Like research on visualization, however, empirical work on external representa-
tion was lacking in the explicit definition of terms. A study on problem solving with 
a diagram might refer to the diagram as an external representation and rely on the 
reader to draw the same antonymic implication as Palmer: an external representation 
is a representation that is not internal. The sensory modality, encoding media, 
presentation substrate, and communicate purpose are left under-specified, allowing 
the term to serve as a category for things that can be perceived, that refer to other 
things. Such things might be presented via any medium, in any encoding structure,

4 Palmer reserves the qualifier cognitive for internal representations, designating the external 
as “noncognitive.” Following a distributed cognitive perspective, we would characterize both 
as cognitive representations and prefer the term “mental” to describe those representations not 
perceivable to others. 
5 More “accessible” is perhaps the more generous characterization. 
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via any sensory modality, referring to anything (real or imagined), for any purpose. 
Zhang and Norman explicitly described external representations as “knowledge 
and structure in the world, as physical symbols (e.g., written symbols, beads of 
abacuses, etc.) or as external rules, constraints, or relations embedded in physical 
configurations (e.g., spatial relations of written digits, visual and spatial layouts of 
diagrams, physical constraints in abacuses, etc.)” [77, pg.3]. 

We refine this definition: 

An external representation (noun) is the form of information, purposefully 
encoded as structures in material artifacts that serve a semiotic function as 
part of an interpretive process. 

Information is encoded externally via forms and structures that can be described 
along a continuum of implicit to explicit, depending on how much effort, or 
inference, is required in their use (see [34, 35]). We remove reference to knowledge 
in the world, preferring the constructivist premise that knowledge does not exist 
in the environment but is actively constructed by the individual via interaction 
with their environment. The kinds of constraints and structures described by Zhang 
and Norman are constituent parts of representations and of how they work. Most 
importantly, we clarify the scope of external representations as being constructed 
by some actor, for some purpose, thus grounding external representation in the 
context of communication—though broadly construed. (Many of the external 
representations we construct are meant for communication not with others, but our 
future selves.) Here, we admit visualization as a subset of external representation: 
an active construction of meaning via the exchange of information between actor 
and artifact. What is crucial is that we orient ourselves equally toward the artifact 
and the interactive process: representation as noun and representation as verb. 

Despite a dearth of precise terminology in the proceeding decades, researchers6 

took up the challenge of discovering how humans think with things, studying how 
various forms of external representations (ERs) influence thinking for various ends. 
An early focus was the fashion in which graphic/diagrammatic ERs influence think-
ing in contrast to natural language, such as in problem solving [37, 77], learning [2], 
design [21], and scientific discovery [14]. Distinctions were drawn between encod-
ing structures: the sentential/propositional (symbols), and graphic/diagrammatic 
(images), where the latter class was taken up by its own interdisciplinary community

6 Particularly in Cognitive Science, Learning Science/Educational Psychology, and disciplinary 
education like Math, Chemistry, and Physics. 
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in the early 2000s.7 Educational Psychologists and Learning Scientists turned their 
attention to multimodal and multimedia representations [41, 56]. A particularly 
impactful contribution was made by Michael Scaife and Yvonne Rogers in [55], 
wherein they proposed a “new agenda” for research on graphical representations and 
in considerable detail and sophistication demonstrate how such research promises to 
improve the design of future technologies while simultaneously advancing theories 
of cognition. By the late 2000s, sufficient interest across allied disciplines warranted 
a special issue of the journal TopiCS in Cognitive Science, dedicated to visual-
spatial representations, with milestone contributions on visual analytics [25], graph 
comprehension [62], and diagrams [13], as well as reviews of how visual-spatial 
representations serve as tools for thinking [70] and corresponding implications for 
design [28]. These are indicative of the work we believe should be at the theoretical 
core of visualization psychology research. 

Thus, we have moved from the study of computer-generated interactive data 
graphics to any externalization of thought. What we are left with, it seems, is a 
Goldilocks problem. The idiomatic conception of visualization is too narrow and 
an exhaustive conception of external representation too broad. Fortunately, there 
are dimensions along which this metaphorical problem space can be surveyed. We 
might think of these dimensions as ranges along which we can attune our attention, 
progressively expanding or narrowing our scope of inquiry depending on the state 
of theoretical and technological advancement. 

On Encoding Medium Though we have noted the lack of precision in defining 
the scope of visualizations, there has been no lack of effort in cataloging [27] 
and taxonomizing them, from general descriptive frameworks [6, 15, 50, 65, 69] 
to those concerned with specific domains of data [1, 4, 7]. Two particularly 
useful (and under-appreciated) are those of Engelhardt [23] who offers an atomic, 
generative framework deserving of its characterization as a language of graphics 
and Massironi [40] who offers both a taxonomy and an evolutionary timeline. 
While most taxonomies deal with some intersection of graphical structure and data 
type (e.g., geographic maps, relational networks), the more common distinction in 
the cognitive and learning science literature is the continuum from descriptive to 
depictive, roughly analogous with symbolic to analog, or propositional to graphic. 
These terms refer to a semiotic modality (also medium), which indicates the degree 
of convention in the relation between a representation and thing to which it refers. 
While the poles of a depictive–descriptive continuum can be easily identified, there 
lays betwixt a murky medium. At what point of abstraction does an icon become 
a symbol? When it is no longer identifiable as its referent without convention? 
In whose judgment? We are more accurate in describing our scope of inquiry as 
multimedia than “primarily graphic.” We propose that while origins of VIS as 
a field lie in the distinction of graphics from text, fundamental questions about

7 The International Conference on the Theory and Application of Diagrams is a biennial gathering 
held since 2000, attended by a cross-section of Philosophers, Psychologists, Mathematicians, and 
Computer Scientists. 
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framing, persuasion, and even comprehension rely on understanding the function 
of text alongside graphics. It is rarely the case that external representations of the 
visual graphic variety are not accompanied by some form of linguistic proposition 
or sentential notation. Indeed, a visualization without a title and labels may be worth 
no words at all. 

On Sensory Modality External representations can be constructed for any sensory 
modality, though by far the most attention has been paid to the visual. Deservedly 
so, as visuals are the most pervasive information artifacts, and the sensory modality 
about which we have the most understanding. Though we are surely far from 
exhausting the wellspring of questions to be asked about visual representations, 
we suggest that we accept within our scope multi-sensory representation. From a 
theoretical stance, this requires broader inclusion of expertise across perceptual psy-
chology, though the applications are consequential. In an increasingly visualization-
driven world, equality and accessibility demand informationally equivalent tools 
for those without visual perception. Notably, we can trace this view back to the 
inception of visualization in HCI: 

It should be noted that while we are emphasizing visualization, the general case is for 
perceptualization. It is just as possible to design systems for information sonification or 
tactilization of data as for multiple perceptualizations. Indeed, there are advantages in doing 
so. But vision, the sense with by far the largest bandwidth, is the obvious place to start, and 
it would take us too far afield to cover all the senses here.—Card et al. [11, pg.7] 

On Representational Purpose or Communicative Context VIS texts describe the 
purpose of visualization as being to “amplify” cognition [11, 24, 72] though research 
in Cognitive Science suggests the story is more nuanced (see [36, 47]). External 
representations enable cognition and can change the nature of the task we are 
performing. This is not to say that one cannot think without external representations, 
but rather, there are certain kinds of thinking that are not possible without the right 
representations to think them. 

The most generic purpose is to simply record: to offload from internal memory 
to external cognition. In terms of communication, to inform—for example, the 
boxplot in a manuscript, where one aims to inform the reader of some aspects of 
the underlying information—in a clear and simple manner.8 But one might design 
that artifact differently if one intends for you to explore the data, undertake an 
analysis, or make a decision, a plan, or a forecast. An author might change their 
strategy if they want to strongly persuade you or, alternatively, want you to use 
the representation to learn. There are entire systems of diagrams designed for 
solving particular kinds of problems, and the design of representations to support 
conceptual change is the focus of specific subdisciplines in STEM education. We 
use the term communicative context to refer to the “cognitive activities” the designer 
of a representation intends the user to perform. The structure of these activities

8 Note that clarity and simplicity do not imply truth. The designer of a representation has a voice 
that is echoed in every design decision, from what information to include to how to encode it. 
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has not been taxonomized, though a compelling framework for their hierarchical, 
emergent structure is detailed by Sedig and Parsons [60]. The relevant insight is 
that certain parameters of a representation, such as the computational efficiency, 
or relative explicitness of certain aspects of data, need to be tuned in accordance 
with the task the reader is expected to perform. Bertin (in English translation [5, pg. 
183]) writes “A graphic is never an end in itself; it is a moment in the processes 
of decision making.” To this, we add “. . . or  reasoning,  or  learning,  or  problem  
solving, or sensemaking, or analyzing, or planning, or forecasting. . . ”  The graphic 
in the moment is thus deeply intertwined with the individual, their situation, and 
task contexts. 

9.3.2 Meaning Is Constructed 

All meaningful phenomena (including words and images) are signs. To interpret something 
is to treat it as a sign. All experience is mediated by signs, and communication depends on 
them.—Chandler [12, pg. 23] 

If external representations are things purposefully constructed to refer to other 
things, then understanding their referential function falls squarely within the realm 
of semiotics. Semiotics is the study of signs, where a sign is construed as “something 
which stands for something else”—aliquid stat pro aliquo [12]. Note this is a larger 
class of phenomena than external representations which we have (pragmatically) 
constrained as being purposefully constructed. Signs, conversely, can be naturally 
occurring: a trail of footprints in the snow or mud puddles following a heavy rain. 
The crux of the semiotic puzzle is that to be a sign, is to be interpreted. Phenomena 
become signs when meaning is assigned to them. You may have the intuition that 
to implicate semiotics is to open a Pandora’s box where terms like represent and 
signify become so complex they risk losing any consistent meaning—and you would 
be right.9 Our task is to introduce the elementary constructs of a particular semiotic 
approach that can be productively applied to understanding the function of external 
representations in distributed cognitive systems. 

Imagine you encounter a line graph in a newspaper. Your job as a reader is 
to develop an understanding (interpretant) of what the graph (the representamen) 
indicates about some state of the world (the referent). The terms referent, repre-
sentamen, and interpretant are drawn from American philosopher Charles Sanders 
Pierce, and his general account of the relations that govern representation, reference, 
and the meaning of signs [30]. Peirce’s basic claim is that a “sign” consists of three

9 “No treatment of semiotics can claim to be comprehensive because, in the broadest sense (as a 
general theory of signs), it embraces the whole field of signification, including “life, the universe, 
and everything,” regardless of whether the signs are goal-directed (or interpreted as being so)” [12, 
pg. xvi]. 
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Fig. 9.2 The three 
components of a Peircean 
sign (referent, representamen, 
and interpretant) are 
irreducibly triadic 

parts: (1) an object (referent) that is the thing being signified, (2) an element that 
signifies (representamen): that which does the referring, and (3) the interpretant: 
understanding that is made of the referent-representamen relation. Importantly, the 
entire triadic relation is referred to as a sign or representation and the dynamics of 
the relation semiosis or signification. Though Peirce’s own terminology changed 
over the development of his ideas, to avoid confusion, we choose here three 
terms not commonly employed outside of semiotics: referent (also, sign-object, or 
signified), representamen (also, sign-vehicle, signifier), and interpretant (also, sign-
mind, understanding) (see Fig. 9.2). The labels we colloquially apply to the material 
substances that comprise external representations—representation, sign—are in 
semiotic terms explicitly not equated with the material component of the sign. 
That is to say, the “representation” is not the representation, but only a part of it. 
The sign-relations are irreducibly triadic, and while we might for sake of analysis 
wish to isolate the relation between sign-object and sign-vehicle (for example, 
how a designer chooses to encode some information) or sign-vehicle and sign-
mind (for example, how a reader interprets the encoding), their function is only 
constituted as a property of all three. This is perhaps more intuitive in psychological 
terms: constructing meaning is a combination of top-down (knowledge-driven) and 
bottom-up (stimulus-driven) interpretative processing. To examine how a reader 
interprets an encoding, we must consider their interaction with the encoding, and 
prior knowledge of the information being encoded. 

Peirce’s triadic semiotic is significant to the psychology of visualization in 
two ways. First, it makes explicit the constructive nature of meaning. Peirce’s 
interpretant brings into the signifying function someone or something that does 
the interpreting: an intelligent process that constructs the translations between 
signifying elements of the representamen, in order to arrive at some approximation 
of the referent. In this way, the relation between the “thing” and the “representation” 
is not a direct and determined mapping, but entirely subjective, based on the 
interpretation of the observer. Second, Peirce’s semiosis is dynamic, relying not 
on the entirety of that which acts as the representamen, but only on the elements 
relevant in signifying. Later accounts elaborate on subdivisions in the referent and
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interpretant that pertain to stages of processing in an unfolding chain of meaning 
[30]. This aspect has a distinctly cognitive appeal, as it suggests a distribution 
of meaning-making between the observer and environment; one that occurs via a 
process in time, not contained solely within artifacts or minds. In the context of 
cognition, together these features of Peirce’s approach are consistent with what 
we know about the influence of prior knowledge and individual differences in the 
determination of meaning. 

9.3.3 Information Is Processed 

“There is no information without information vehicles. Information vehicles are the 
carriers of information, the physical material in which the information-for-the-interpreter 
is encoded.”—Nauta [45] 

In an age of grounded, embodied, and extended cognition, it is rather fashionable 
to discount information-processing psychology as outdated. However, there is 
a difference between studying psychological phenomena as the processing of 
information and studying the phenomenon of information processing. The classical 
conception of information-processing regards the mind as a computational system 
manipulating symbols to enact representational states. The information-processing 
psychologist might seek to explain all psychological phenomena through this 
lens—behavior resulting from the propagation of representations, disregarding the 
influence of the body, modal systems, or environment. Contemporary theories 
that situate cognition beyond the mental are extraordinarily applicable to human 
interaction with external representations. But so too are some constructs from 
information processing. In a Visualization Psychology, we are directly concerned 
with how humans interact with information via representations. To the extent that 
we rely on the notion of information, we cannot escape the notion of its processing. 
Importantly, we are not proposing that to adopt an information-processing view 
of visualization requires commitment to a computational theory of mind, nor any 
strictly sentential/propositional symbol manipulation in the brain. One problem with 
information-processing models of cognition was that they paid “scant regard” to the 
external world of artifacts and information (see [53]). By exploring phenomena that 
require processing of multimedia (i.e., text and graphic) information, we expect 
that the Visualization Psychologists can improve on these theories by directly 
addressing the interface between external and internal information, especially in 
the construction of meaning.
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9.3.4 Cognition Is Distributed 

It does not seem possible to account for the cognitive accomplishments of our species by 
reference to what is inside our heads alone. One must also consider the cognitive roles of 
the social and material world. But how shall we understand the relationships of the social 
and the material to cognitive processes that take place inside individual human actors? This 
is the problem that distributed cognition attempts to solve.—Hutchins [32, pg. 2071] 

As behavioral scientists, we are concerned not only with the design and efficacy 
of external representations but also with their mechanisms: how and why they 
function (or not). These functions are enacted between the artifact(s) and person(s), 
embodied and situated in their environments and complex social structures. This 
complexity demands a distributed perspective of cognition, one that extends func-
tions of the mind beyond the individual’s skin and skull (see [16, 17]) and distributes 
them through time and space via material artifacts and members of society (see 
[31, 32]). Unlike traditional theories, distributed cognition extends the reach of what 
is considered “cognitive” beyond the individual to encompass interactions between 
people and with resources and materials in the environment. 

The applicability of a distributed cognitive perspective to research in visualiza-
tion [39] and human–computer interaction more broadly [29] has been successfully 
argued, and corresponding methods of cognitive ethnography are now widely 
accepted in VIS and HCI publications. Through cognitive ethnographic techniques 
(e.g., interviewing, participant observation, in-situ recording), a researcher can 
determine what things mean to the participants in an activity and to document the 
means by which these meanings are created. In this way, cognitive ethnography 
yields data for exploring cognitive mechanisms, while also feeding distributed 
cognitive theory by adding to the corpus of observed phenomena the theory should 
explain. 

A distributed perspective on cognition is particularly relevant to the psychol-
ogy of visualization because it not only provides an overarching framework for 
investigating representations and representational processes but actively encourages 
integration of ethnographic and experimental approaches as well. While the study 
of cognition in the wild can answer many kinds of questions about the nature of 
human cognition in real workplaces, the richness of real-world settings places limits 
on the power of observational methods. This is where well-motivated experiments 
are necessary. Having observed phenomena in natural settings, the researchers can 
set about designing more constrained experiments to systematically explore specific 
aspects of observed situated behaviors. Importantly, distributed cognition does not 
require that every aspect of a cognitive system be examined in every interaction: 
levels of analysis still apply. But a distributed cognitive perspective does require that 
the most highly operationalized inquiries of basic processes are contextualized as 
only parts of a more complex system of factors that taken together, explain behavior. 

In every area of science and technology, the choices made about units of analysis 
have crucial consequences. Boundaries are often a matter of tradition in a field. 
Sometimes the traditionally assumed boundaries are exactly right for investigating
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a specific issue. For other phenomena, however, the boundaries either span too 
much or, more frequently, too little. The failure to reevaluate the unit of analysis as 
sciences advance and technology changes can fundamentally restrict development. 
A common critique of distributed cognition in psychological traditions is the 
necessity of extending the unit of analysis to the environment. From Wilson, 
for example, “The fact that causal control is distributed across the situation is 
not sufficient justification for the claim that we must study a distributed system. 
Science is not ultimately about explaining the causality of any particular event. 
Instead, it is about understanding fundamental principles of organization and 
function” [75, pg. 630]. We obviously disagree with this claim and argue that 
insofar as the function of the mind is to control real-time action in dynamic 
environments, any sufficient understanding of its organization requires theoretical 
and methodological approaches that directly address the environment as an active 
participant in cognition. Fortunately, today the lens of distributed cognition is part 
of an emerging zeitgeist that appreciates the central importance of closing the 
divide between computationally focused disciplines and disciplines concerned with 
understanding people and sociotechnical systems. 

9.4 On Doing Visualization Psychology 

We propose the following definition for Visualization Psychology: 

Visualization Psychology is a scientific research program at the intersection 
of computing, behavioral and social sciences. It is characterized by the 
application of theories of perception, cognition and behavior to predict and/or 
explain the nature of human interaction with visualization systems, and by the 
use of visualization phenomena to inform theories of perception, cognition, 
and behavior. 

This definition emphasizes that (1) VisPsych should be a scientific endeavor: 
though it may involve close collaboration with designers and engineers, the 
intellectual goal of the research is generating knowledge, and (2) the flow of insight 
in VisPsych should be bidirectional: benefitting from and contributing to work in 
engineering or design-oriented aspects of visualization. Research in Visualization 
Psychology can contribute to the design and evaluation of visualization systems, 
while the design and engineering of visualization systems can provide sites of 
inquiry for both basic and applied psychological research. It has elements of both 
basic and applied science, employing basic theories to explain specific (visualiza-
tion) phenomena, the outcomes of which may serve as data for (re)constructing 
basic theory. In this sense, much Visualization Psychology might be most accurately
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characterized as use-inspired basic research, à la Stokes [67] Pasteur’s quadrant 
conception of a two-dimensional relation between basic and applied research. 
Finally, (3) we have purposefully characterized VisPsych as a program of research, 
rather than a singular discipline or distinct community. 

According to Lakatos, the measure of a research program is its ability to make 
both theoretical and empirical progress. Theoretical progress is made by building 
on foundational tenets to develop theory and apply it to new empirical domains. 
Empirical progress is made by evaluating theory. Across the VIS and visualization-
adjacent literature in psychology/learning science/cognitive science we find diverse 
examples of such progress. 

Extending Theory to New Domains An example of theoretical progress can be 
found in the research agenda of Cognitive Psychologist Priti Shah, whose early 
research applied psychological theory from reading comprehension to the emerging 
topic of graph comprehension. Shah and colleagues built upon Pinker’s [52] 
information-processing theory of graph comprehension by re-construing perception 
of a graph as reading and invoking constructs from the prevailing Construction-
Integration [33] theory of text and discourse comprehension (see [61]). From this 
application came new testable hypotheses about the role of prior knowledge and 
individual differences in comprehension and the temporal dynamics of information 
processing in graph comprehension more broadly. Although this work was not 
explicitly situated in the context of distributed cognition or triadic semiotics, it is 
consistent with both lenses insofar as it situates graph comprehension as discourse 
between the designer and the reader of a visualization, differentially influenced by 
factors acting on the display, the individual, and task(s). 

Evaluating Theory in New Domains A powerful example of the virtuous cycle 
between basic psychological and applied-visualization oriented research can be 
found in the recent movement to (re)connect research in visualization with vision 
science. While some of the earliest empirical work in visualization was concerned 
with visual perception (e.g., [18, 66]), modern interdisciplinary research in vision 
science offers both new methods (see [22]) and theoretical constructs. Ensem-
ble perception, for example, refers to how the visual system extracts summary 
statistical information from groups of similar objects, ostensibly as a way of 
dealing with spatial and temporal processing constraints [73]. Szafir and colleagues 
have applied the theoretical arguments for ensemble perception to the domain of 
data visualization and argued for how it may serve as mechanism for some of 
the most common perceptual tasks we perform when interpreting visualizations, 
including identifying outliers, detecting trends, and estimating means [68]. While 
the development of ensemble perception as a construct is not necessarily grounded 
in distributed or semiotic perspectives, its application to visualization is: first, by 
providing an account for how differing interpretations can arise from the same visual 
stimuli (an explicit acknowledgement of the triadic nature of semiotic discourse), 
and second, by positioning the research as a contribution rather than determinant 
of design heuristics (an implicit acknowledgement that ensemble perception is 
a valuable piece rather than sole factor in the puzzle of visualization behavior).
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Fig. 9.3 The 
human–information 
interaction epistemic cycle 
(adapted from original draft 
with permission of author, 
Paul Parsons). We cannot 
overemphasize the 
importance of 
conceptualizing these spaces 
as metaphorical and not 
simultaneously reifying the 
layers as physical systems 
with linear exchanges of 
information. In practice, 
information processing 
emerges dynamically, 
simultaneously across the 
material components that 
constitute the system. This 
diagram can be construed as a 
snapshot of this dynamic 
processing, linearly unfolded 
in time from left to right 

This contextualization is crucially important in ensuring basic theory is applied 
appropriately in design-driven research. 

Model Building to Support Innovation An exemplar for progress that supports 
research in both basic and applied dimensions is the EDIFICE framework10 

developed by Sedig and Parsons. As a conceptual model, it provides a structure 
for thinking about the processing of information (such as goal-directed interaction 
with a visualization) distributed through the components of a cognitive system. In 
Fig. 9.3, we find five (metaphorical) spaces that together form a human–information 
interaction epistemic cycle (see [57–59]). 

The information space consists of the set of information with which users 
might interact and the computing space its storage and manipulation (i.e., machine 
computation). In the representation space, encoded information is made available 
for perception. (The “space” of representation is an abstraction, but is reified in 
computers as “the interface.”) The interaction space affords exchange of informa-
tion via action and perception: where the interpreter performs actions and receives 
reactions. In the mental space exist the mind and mental operations that contribute to

10 Epistemology and Design of human–InFormation Interaction in Cognitive activitiEs. 
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but importantly do not entirely constitute the construction of knowledge. The model 
is clearly grounded in the perspectives of information processing and distributed 
cognition. Though it was conceived in the context of interaction with complex 
visualization tools, its abstractions can be fruitfully applied to the wider space of 
multimodal and multimedia external representations. Most importantly, it makes 
explicit that the design of a visualization tool is a communicative act between 
designer and user. 

The EDIFICE framework offers a productive nomenclature for designating 
which components of a distributed cognitive system we might be addressing 
in the context of a particular research project, allowing us to more accurately 
characterize limitations and desired integrations for future work. For example, a 
new visualization system that uses machine learning to recommend graph encodings 
would primarily involve the design of algorithms in the computing space and 
resultant productions in the representation space. A user-study of such a tool would 
involve measuring the outcome of operations in the mental space when an individual 
interacts with the application (via the interaction space). Most importantly, the 
framework serves as tool for thinking about how the processing of information 
is distributed across a system of human-visualization interaction: a problem of 
substantial importance to designers and researchers alike. The authors have applied 
the framework to describe the relative distribution of information processing across 
machine and human actors [51], to characterize the construct of interactivity [60], 
and as the backbone for a pattern-language to aid conceptualization of novel 
visualization designs [57, 58]. 

9.5 The History and Future of Visualization Psychology 

In From Tool to Partner: The Evolution of Human–Computer Interaction [26], 
Jonathan Grudin provides a comprehensive history of HCI. But this is not a 
commentary on the growth of a discipline, rather he illustrates how HCI (as a topic 
of study) emerged as a practice across communities in computer science, human 
factors, information systems, and information science. This is a telling editorial 
choice, revealing how entrenched institutional structures in academic disciplines 
interact with the moderately more pliable boundaries of professional societies to 
endow structural support to emerging subjects of inquiry that necessitate cross-
disciplinary contribution. The cover illustration for the volume (penned by Susie 
Batford) can be read as deeply metaphorical. Over an undulating sea rise distinct 
mountain peaks, bearing the labels of various computing-related fields, including 
MIS (management information systems), HF (Human Factors), CS (Computer 
Science), and LIS (Library and Information Science). Running down and over and 
across the peaks, ostensibly nourishing rich research ecosystems, are bright blue 
rivers fed by an enormous raining cloud—labeled psychology. 

One can imagine a similar scene for a history of Visualization. Research involv-
ing the creation, systematization and situated use of (primarily, though not entirely,
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graphic) visual-spatial representations of information is taking place across the 
sciences and humanities. Such research is enabled by both computing technology 
and theories of human behavior. By virtue of its name, the VIS community claims 
epistemic authority over visualization and serves as a pragmatic “home base” for 
technological innovation. But basic psychological theory rains upon disciplinary 
peaks like chemistry, physics and mathematics, education, communication studies, 
and even philosophy. Scholars in these disciplines are not merely using visualiza-
tions as tools in their work, but doing work that centers (representation) design, 
development, and evaluation, as well. 

Through their Call for Papers, the organizers of the 2020 VisPsych workshop 
articulated a vision for a new subject, one that would catalyze an interdisciplinary 
community in pursuit of new research directions of benefit to both VIS and 
psychology. We begin this chapter by detailing the grounds on which we agree 
with this premise: that visualization (as a phenomenon) is a fertile laboratory 
for exploring human cognition, that engineering and design-driven research in 
visualization can be improved via appropriate grounding in psychological theory, 
and that well-structured collaborations across disciplinary boundaries can foster 
a virtuous cycle of mutual benefit. Where we diverge from this vision, is in 
characterizing the subject as new. Rather, we see the intersection of visualization 
and psychology as tracing back to the origins of human–computer interaction. Fur-
thermore, relevant study of external representations permeates beyond the present 
institutional boundaries of VIS. We believe that the psychology of visualization is 
so fundamental to our progress that a call for a new interdisciplinary community 
should both catalyze a dedicated research program and re-center and expand the 
boundaries of visualization as a field. 

Writing from the hallowed halls of Xerox PARC in the late 1990s, Stuart Card, 
Jock Mackinlay, and University of Maryland colleague Ben Shneiderman compiled 
what was to become the first de facto textbook for a burgeoning field—Readings 
in Information Visualization: Using Vision to Think (1999). Compiled a decade 
after the NSF-sponsored report that spawned the formal discipline [42] this now-
venerated collection of papers and essays documented the state of VIS research at 
the close of its “foundational period,” its table of contents betraying its continued 
entanglement with human–computer interaction, human factors, and computer 
graphics communities. As a technology, visualization opened new frontiers for 
presenting data in multiple dimensions with real-time interactions that the newly 
affordable PC platforms could render. Visualization was a tool for exploring the new 
information structures digital computers afforded, for supporting user interaction 
within the document-application paradigm of the time, and for conceptualizing 
and building the very graphical user interfaces we take for granted today. And 
there at the very beginning of visualization, there was the psychology of external 
representation. Card, Mackinlay and Shneiderman saw fit to begin their introductory 
chapter with a narrative of cognition outside the mind, describing how visual 
external representations like Arabic numerals, slide rules, and navigational charts 
could be used to support computation distributed through the environment.
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But VIS was and would remain first and foremost a constituent of Computer 
Science. Like HCI and Human Factors, the early contributions of Psychology would 
be primarily psychophysics and empirical measures of “usability.” While these areas 
are not to be dismissed, in the interceding decades, scientists have come to embrace 
perspectives that ground cognition in a body, situated in an environment, distributed 
through an ecosystem. There is a milieu in which these perspectives intersect and 
inform research as disparate as how expert mathematicians invent notations for 
new concepts, how animations of 3D models help or inhibit learning in chemistry, 
and how multiple modalities can be leveraged to engage diverse audiences in 
museums. These questions too are about humans interacting with representations 
of information; they are like but not quite VIS material. We believe that as a field, 
visualization should re-center itself in this space, taking a step back from Computer 
Science and toward social and behavioral sciences more broadly, “zooming out” 
from the interactive, abstract, computer-based caveats of (traditional) visualization 
to the first principles that apply across these phenomena. If we shift our focus from 
visualization as a method of computing to external representation as a tool for 
thinking, we find a framework for giving structure to the factors that exert causal 
influence on the phenomena we study; concepts that considered in isolation appear 
idiosyncratic may in fact be part of a more predictable, coherent whole. 
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Chapter 10 
Visualization Psychology for Eye 
Tracking Evaluation 

Maurice Koch, Kuno Kurzhals, Michael Burch, and Daniel Weiskopf 

Abstract Technical progress in hardware and software enables us to record gaze 
data in everyday situations and over long time spans. Among a multitude of research 
opportunities, this technology enables visualization researchers to catch a glimpse 
behind performance measures and into the perceptual and cognitive processes 
of people using visualization techniques. The majority of eye tracking studies 
performed for visualization research are limited to the analysis of gaze distributions 
and aggregated statistics, thus only covering a small portion of insights that can 
be derived from gaze data. We argue that incorporating theories and methodology 
from psychology and cognitive science will benefit the design and evaluation of 
eye tracking experiments for visualization. This book chapter provides an overview 
of how eye tracking can be used in a variety of study designs. Furthermore, we 
discuss the potential merits of cognitive models for the evaluation of visualizations. 
We exemplify these concepts on two scenarios, each focusing on a different eye 
tracking study. Lastly, we identify several call for actions. 

10.1 Introduction 

Eye tracking experiments in visualization research provide insights into how 
people interpret and interact with visualizations. In contrast to classic performance 
analysis, the analysis of gaze behavior provides information about the distribution 
of visual attention over time. Eye tracking further helps understand visual strategies 
employed in interpreting a visualization or in working with a complex visual 
analytics system. In addition, machine learning, statistics, visualization research, 
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Visualization Psychology for 
Eye Tracking Experiments 

interactive techniques 

visual analytics 

user-based evaluation 

gaze distributions 

scanpaths 

cognitive measures 

perception theory 

study methodology 

cognitive architectures 

explainability of observations 

theory-based hypotheses 
improved study design 

Fig. 10.1 Visualization psychology for eye tracking experiments incorporates expertise from 
psychology and cognitive science to improve the evaluation of visualization techniques by study 
methodology, theory integration, and cognitive architectures. Figure reprinted from Kurzhals et 
al. [26] 

and data science in general contributed a multitude of new techniques [5, 11] 
to expand the spatio-temporal analysis of eye tracking data, verify results, and 
formulate new hypotheses. By combining such state-of-the-art analysis techniques 
with expertise from psychology, cognitive science, and eye tracking research, as 
depicted in Fig. 10.1, the design and insights gained from eye tracking experiments 
in visualization can be significantly improved. However, evaluation in visualization 
still lacks concrete guidance on such interdisciplinary research. One part of the prob-
lem is the increasing disconnect between psychology and visualization research. For 
example, in visual analytics, there is less focus on individual visualizations but on 
the processes that the tool is meant to support. Such processes often can be related 
to different scenarios, such as visual data analysis and reasoning and collaborative 
data analysis [30], to name a few. Although visualization research has become 
more process-centered on a conceptual level, evaluation today still mostly involves 
usability testing and benchmarking based on completion time and error metrics. 
For this reason, we advocate that the visualization community broadens their scope 
toward evaluation methodologies that better capture the dynamics of complex tool 
interactions. In a similar sense, we advocate that cognitive psychologists actively 
participate in that endeavor by focusing their study on higher level cognition. Fisher 
et al. [14] even call for translational research that bridges pure science and design, 
with the hope to better support knowledge transfer between both fields. A major 
inspiration for this work has been Kurzhals et al. [26], who advocated for more 
interdisciplinary research between the fields of psychology, cognitive science, and 
visualization. In this book chapter, we exemplify how the eye tracking modality
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could be beneficial to a broader scope of empirical studies, beyond classical 
laboratory experiments. 

10.2 Study Designs 

In the following, we describe how different study designs commonly found in 
visualization evaluation [10] can benefit from eye tracking methodology. Eye 
tracking has become popular in the evaluation of visualizations, and there is a wide 
variety of methods and metrics to evaluate the performance of visualization [15]. 
Kurzhals et al. [27] reviewed 368 publications that include eye tracking in a user 
study and identified three main approaches to evaluate visualizations: evaluating 
the distribution of visual attention, evaluating sequential characteristics of eye 
movements, and comparing the viewing behavior of different participant groups. 
Their review also shows that user studies with eye tracking have become more 
common in recent years. 

However, the use of eye tracking in evaluation methods has been narrow in the 
sense that it is predominantly used in laboratory experiments but infrequently found 
in in-the-wild studies. Laboratory experiments offer great control and precise results 
but are primarily suited to study individual factors with predefined hypotheses. In 
this section, we outline the current practice of using eye tracking in visualization 
research, mostly in the context of controlled experiments. Furthermore, we outline 
how eye tracking could be beneficial beyond laboratory experiments. For this, we 
include a discussion of in-the-wild studies. 

10.2.1 Controlled Experiments 

Eye tracking has become increasingly popular in laboratory experiments. In visual-
ization research, controlled experiments have been mostly conducted for summative 
evaluation, such as usability testing and benchmarking. However, such studies often 
fail to relate their findings to the underlying cognitive processes. 

Here, we showcase just a few selected eye tracking studies in visualization with a 
strong focus on cognitive aspects, such as reasoning, memorability, and perception. 

Huang et al. [20] studied how link crossings in graph drawings affect task 
performance. Participants were asked to find the shortest path between two specified 
nodes for each drawing. Their eye tracking experiment revealed that link crossings, 
contrary to the common belief, only have minor impact on graph reading perfor-
mance, especially at angles of nearly 90. ◦. Instead, the extra time spent on certain 
drawings was due to the tendency of subjects to prefer certain paths at the beginning 
of the search task. It was observed that subjects tend to follow links that are close 
to a (imaginary) straight line between the target nodes. This can increase the search 
time if no such links exist in the graph drawing, and alternative graph lines must be
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considered. This behavioral bias during the initial search process in graph drawings 
was termed geodesic-path tendency. Körner et al. [28, 29] found that this behavior 
can be explained by studying to which extent search and reasoning processes in 
graph comprehension are performed concurrently. The two main process involved 
in such a task are first detecting both specified nodes in the graph (search) and 
next finding the shortest path between those two nodes (reasoning). Assuming that 
these processes occur in parallel, subjects would not show this kind of bias toward 
certain links in graph drawings as described by geodesic-path tendency. Körner et al. 
conducted eye tracking experiments and found that these two graph comprehension 
processes indeed are mostly performed sequentially. This means that subjects can 
only rely on local information of the graph drawing to perform reasoning during the 
search task. 

Borkin et al. [6] studied the memorability of visualizations and how well they 
are recognized and recalled. Their experiments consist of three phases: encoding, 
recognition, and recall. In the encoding phase, subjects were exposed to 100 
different visualizations sampled from the MassVis dataset. After the encoding phase 
of 10 seconds per image, subjects were exposed to the same images plus unseen 
filler images as part of the recognition phase. In both phases, eye fixations were 
collected to examine the elements in visualizations that facilitate the memorability. 
In the last phase, subjects were asked to describe correctly identified images as 
best as possible to understand what elements were easily recalled from memory. In 
the encoding and recognition phases, eye fixations were analyzed with heatmaps 
to find what parts of the visualization draw initial attention to subjects. During 
encoding, subjects tend to perform visual exploration, and fixations are distributed 
across the image. This pattern can be observed on most images. Fixations during 
the recognition phase are distinct between most recognizable images and least 
recognizable images. It was shown that in the most recognizable visualizations, 
fixations are more biased toward the center of the image and are generally less 
widely distributed. This means that relatively few fixations are needed to recall 
easily recognizable images from memory, whereas less recognizable images require 
more contextual information. Their study also shows that participant descriptions 
are of higher quality for visualizations that are easily recognizable even with a 
reduced amount of encoding time (such as one second). Interestingly, prolonged 
exposure does not change the fact that some visualizations stay more recognizable. 

Hegarty et al. [18] studied how saliency of task-relevant and task-irrelevant 
information on weather maps impacts task performance. Mean proportion of 
fixation time was measured to study the level of attention on task-relevant or 
task-irrelevant information before instructions and after instructions. On the one 
hand, it was reported that fixation time significantly increases on task-relevant 
areas after instructions were given, which shows that attention is strongly driven 
by top-down influences. On the other hand, visual salient regions do not draw 
attention to participants, unless they correspond to task-relevant areas. These results 
emphasize that visual salience does not necessarily facilitate task performance,



10 Visualization Psychology for Eye Tracking Evaluation 247

unless participants are sufficiently guided by top-down processes toward task-
relevant information. 

The aforementioned visualization studies exemplify that eye tracking has become 
an established modality to study cognitive processes. Furthermore, many of these 
results are directly applicable to the visualization community 

10.2.2 In-the-Wild Studies 

As the complexity of visual artefacts increases, it becomes harder to provide holistic 
assessments of the effectiveness of complex visualization tools. Field studies offer 
more realism by assessing systems within their natural environment like at the 
domain expert’s work place. In such settings, it is easier to study processes, 
like sense-making since they tend to be highly context-sensitive. Thus, such 
processes are more difficult to capture in controlled experiments that usually impose 
tight protocols [30]. Many researchers believe that visualization evaluations could 
benefit from more qualitative research, for example, by employing ethnographic 
techniques [13, 38]. In general, social science methods should receive more attention 
in the community since individual assessment techniques often fail to capture 
contextual factors [31]. 

Ethnographic techniques have been advocated by Shneiderman et al. [38] in the  
form of multi-dimensional in-depth long-term case studies (MILCs). MILCs are 
performed in-field, in a domain expert’s natural working environment, and thus they 
are unobtrusive and guarantee more realistic results. Data collected in MILCs is 
mostly qualitative and consists of interviews, log books, user maintained diaries, and 
usage statistics obtained from the visualization tool. Field studies are often based on 
ethnographical participant observation methods, interviews, surveys, and automated 
logging of user activity [38], i.e., they are predominantly qualitative research in 
terms of data collection and analysis. Qualitative evaluation often involves thematic 
analysis and manual coding, and both are inherently subjective processes [10]. There 
are multiple problems associated with a primarily quantitative data collection and 
analysis approach. First, data collection and analysis are tedious processes that often 
involve a lot of manual work. In terms of data analysis, software tools like computer-
assisted qualitative data analysis software (CAQDAS) [3] improve the efficiency of 
thematic analyses and assist coding, but only to a limited extent. This problem gets 
exacerbated in long-term studies where a large amount of diverse data is collected. 
For this reason, many MILCs come only with a few interviews and observations, 
and during the study, data collection is sparse, at most it consists of user interface 
logs that are automatically recorded (in practice, even logging is very uncommon 
except for Shneiderman’s MILC study [38]). 

The usage of physiological sensors is in particular challenging in ethnographic 
studies, where the property of unobtrusiveness must be obeyed (interference by 
study coordinators needs to be kept minimal). This is hardly achievable with stand-
alone eye tracking devices and electroencephalogram (EEG), which are highly
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Fig. 10.2 Conceptual overview of data collection in in-the-wild studies. Different modalities such 
as camera views, keyboard and mouse logging, and eye tracking can be combined to generate a 
data-rich description of the study. The collected data can be transformed or extended semantically 
with labels provided by human annotators. The small visualization inset shows a figure reprinted 
by permission of Taylor & Francis Ltd from Netzel et al. [33] 

invasive and lack mobility. Furthermore, such physiological sensors often require 
external supervision and careful setup. This naturally restricts what and how data 
is collected in ethnographic studies. However, in regard to eye tracking devices, 
we have seen technological progress toward mobile devices that are less invasive 
and require almost no external supervision. In this way, eye tracking could act 
as a quantitative modality that does not interfere with ethnographic requirements 
like unobtrusiveness. Figure 10.2 illustrates the basic idea of collecting data from 
multiple sources and semantically and/or algorithmically extending it in subsequent 
steps. 

Whether a modality is considered invasive depends not only on the modality 
itself but also on the situational context. For example, think-aloud protocols can be 
elicited either naturally, or they can be imposed externally on request (by a study 
coordinator), which could negatively affect reasoning processes [2]. Think-aloud 
might also negatively interfere with the natural eye movement, for example, during 
attending the screen. To compensate this issue retrospective think-aloud [27] of  
screen recordings accompanied by eye tracking data was suggested [12]. In general, 
it is important to detect these attention shifts, which also occur naturally without 
external stimulation and revalidate the recorded eye movements. Transferring our 
studies to virtual reality (VR) could provide non-invasive access to physiological 
sensors that are readily available in VR headsets. This could go beyond eye tracking 
and further include tracking head/body movements and interface interactions. 

The previously discussed scope of in-the-wild studies is on individuals but can 
be easily extended to collaborative settings as well. In that regard, pair analytics [2] 
provides an interesting approach to studying social and cognitive processes for the 
evaluation of visual analytics tools. Pair analytics studies the interaction between 
two human subjects, the subject matter expert and the visual analytics expert, 
and visual analytics tools. The visual analytics expert and subject matter expert
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collaborate to solve a specific domain goal, but both have different responsibilities 
and roles in that process. The subject matter expert (driver role) is the domain 
expert that has the contextual knowledge but not the expertise to use the visual 
analytics tools, whereas the visual analytics expert (navigator role) lacks the domain 
knowledge but the technical expertise to translate the verbal requests from the 
subject matter expert to tool commands. The dialog between the subject matter 
expert and the visual analytics expert makes the mental models and cognitive 
processes explicit and thus captures important cues of the collaborative process. 
Compared to classical think-aloud protocols, verbalization during collaborative 
processes occurs naturally. Aligning the rich data from think-aloud protocols with 
eye-movements from the subject matter expert and the visual analytics expert could 
be a good starting point for in-depth analysis on social and cognitive processes. 
Kumar et al. [25] have proposed a similar type of study, but in the context of 
pair programming. Data from eye tracking data and other modalities, like recorded 
video, are time-synchronized. Having discussed the merits of in-the-wild studies in 
the evaluation of visualizations, we also need to address the inherent difficulties 
of conducting those studies. As Shneiderman et al. [38] already mentioned, it 
is necessary for researchers and participants to allocate a considerable amount 
of time into such studies. For example, Valiati et al. [40] performed multiple 
longitudinal case studies, each took about three to four months. This complicates 
recruiting participants, in particular, when domain experts are needed. It needs to 
be emphasized that this requires an intense level of collaboration and devotion from 
both the researchers and the domain experts. 

10.2.3 Bridging Between Quantitative and Qualitative 
Research 

The aforementioned study designs can be roughly classified as being either qualita-
tive or quantitative. Quantitative evaluation, often in laboratory experiments, follows 
statistical frameworks to make precise inferences about predefined hypotheses. 
Qualitative evaluation potentially provides a richer understanding of the studied 
phenomena. This includes field studies, observational studies, and interviews [10]. 

Study designs that encompass data collection, analysis, and inferences tech-
niques from both methodological paradigms can potentially offset their individual 
shortcomings. The commonly found dichotomy in quantitative and qualitative 
inquiry is too narrow. This motivates the research field of mixed methods, which 
uses methods from both disciplines to provide a better understanding of the studied 
phenomena [23]. One of the hallmarks of mixed methods is to achieve integration 
by bringing qualitative and quantitative data together in one study [32]. This 
integration can occur at different levels such as integration at the study design level, 
methods, and interpretation/reporting. An example of integration at study level is an 
explanatory sequential design where the quantitative phase informs the follow-up 
qualitative phase. For example, a controlled study design with eye tracking could
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be conducted to quantitatively evaluate the performance on a visual search tasks 
with two different visual representations. A follow-up qualitative phase could be 
justified for several reasons. For example, a group of participants could strongly 
deviate in performance. The follow-up qualitative phase could try to identify the root 
of this cause by performing a retrospect think-aloud protocol where the respective 
participants comment on their played-back eye movements. Think-aloud can also 
be performed concurrently to eye tracking experiments, which would correspond to 
a convergent mixed methods design. 

Integration at the other two levels is more concerned with mixed-data analysis, 
and it is considerably more challenging and less explored [32, 41]. Common strate-
gies of mixed-data analysis include data transformation, typology development, 
extreme case analysis, and data consolidation [8]. Data consolidation is one of the 
greatest challenges of mixed-data analysis since it merges two datasets, which goes 
beyond linking. The difference is that both data sources remain clearly identifiable 
after data linking while consolidation leads to a genuine new piece of information. 
These techniques are not necessarily distinct, for example, data transformation 
could be an important prepossessing step for data consolation. Data transformation 
encompass two data conversion directions, either quantified data is transformed to 
qualitative data (qualitizing) or vice versa (quantizing) [41]. A common way to 
perform quantization is by counting codes in an thematic analysis. In that way, quan-
titative methods like inferential statistics can be applied indirectly to qualitative data. 
Qualtizing can be seen as a semantic transformation of the original quantitative data. 
This could add a semantic link to quantitative measurements, which is usually not 
present in such measurements beforehand. For example, gaze data in its raw form is 
just a trajectory in 2D space without any semantic link to the underlying stimulus. 
For static stimuli, this semantic link is easy to provide since there is a one-to-one 
correspondence between gaze location and stimuli location. However, such a direct 
correspondence is not present in dynamic stimuli where the underlying scene varies 
over time. Providing additional semantics to gaze data with underlying dynamic 
stimuli, for example, by labeling time spans according to the participant’s activity, 
would increase the usefulness of these measurements. This form of data consolida-
tion by annotation of quantitative data can improve the credibility of those measure-
ments and thereby improve the quality of subsequent mixed-data analysis steps. 

10.3 Explainability of Observations 

As already outlined in the previous section, building semantic links between gaze 
data and contextual factors, like scene information or activity labels, can aid the data 
analysis and thereby the explainability of observations. 

Areas of Interest 
Scanpaths can be transformed to qualitative data by mapping each fixation to a 
label, which uniquely identifies an area of interests (AOIs). The usefulness of
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such a representation depends on the semantics of AOIs. For example, AOI grids 
automatically generated for static stimuli do not provide much semantic details 
since an AOI hit is just still an indicator of spatial position (spatial quantization) but 
does not provide semantic information w.r.t the underlying visual entity. A similar 
problem occurs for AOI induced by automatic clustering of gaze data, where regions 
with strong accumulation of gaze positions are defined as AOIs. In contrast to such 
automatically generated AOIs, manually AOIs defined based on semantics (images 
on web pages, axes on graphs, etc.) can provide more detailed information. 

Interpretation and Data Analysis 
In Sect. 10.2, we have mentioned the challenges in data collection and analysis 
in the context mixed-methods research. These kinds of challenges are particularly 
relevant for in-the-wild studies, such as the previously described long-term field 
studies in pair analytics. It is challenging to integrate data from heterogeneous data 
sources, such as eye tracking and other physiological sensors, as well as handwritten 
or verbal protocols. An interesting approach toward these problems is visual data 
analysis, sometimes referred to as visualization for visualization (Vis4Vis) [42]. 
The vision behind Vis4Vis is to use visualizations to analyze and communicate 
data from empirical studies. In the context of eye tracking studies, visual analysis 
tools have been shown to support the evaluation of studies. For example, Blascheck 
et al. [4] provide a comprehensive overview of visualization techniques for eye 
tracking data. Some visual analysis approaches have been proposed that integrate 
eye tracking data with other data modalities, such as think-aloud protocols and 
interaction logs. Blascheck et al. [3] proposed a visual analytics system that allows 
interactive coding and visual analysis of user activities. Such approaches could be 
considered as a first step toward visual analysis of data-rich empirical studies with 
multiple data modalities. Nonetheless, there is still the need for more scalable visual 
representations and automatic analysis techniques to better support the analysis of 
data from long-term empirical studies. 

10.4 Cognitive Architectures 

One of the overarching goals of empirical studies in visualization is to formulate 
guidelines and heuristics that inform the design of future visualizations. However, 
many psychological phenomena only apply to specific aspects of the evaluation, like 
Gestalt Laws, but visualization consists of multiple perceptual and cognitive aspects 
combined. Thus, guidelines and heuristics on system level would be preferable. 
However, since they typically involve higher level cognitive tasks, they are more 
influenced by individual factors, such as knowledge, cultural background, and 
cognitive capabilities. Computational models have the potential to generalize across 
a wide range of individuals [27] and can provide methods to accurately predict the 
effectiveness of visual designs [19]. As shown in Fig. 10.3, such simulation could 
be performed on multiple levels. On the most fundamental level one, simulation
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Saliency Prediction 
Stimulus-driven 

Mixed-initative 
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Data Exploration 

Level 1 
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Fig. 10.3 Cognitive simulation can be performed on multiple levels. Each layer corresponds to 
one class of tasks. Each level depends on its lower levels. For example, simulation of collaborative 
settings with multiple individuals performing a common task requires successful simulation of 
cognitive tasks (levels 1 and 2) for individuals 

of human cognition boils down to perceptual simulation that is often highly driven 
by the stimulus or more general bottom-up influences. Early work on that level 
has been proposed by Itti and Koch in the context of visual saliency prediction 
[22]. In general, cognitive simulation on higher levels has been less explored, 
mostly due to its complexity and the lack of formal descriptions. Nonetheless, 
computational models based on cognitive architectures have been proposed to 
automate the evaluation of visualizations on the level of reasoning and decision-
making. One example of the application of cognitive architectures like ACT-R [1] is  
CogTool (see https://www.cogtool.org), which is deployed for the initial validation 
of web designs. Eye fixations can play an important role as a means to train and 
validate cognitive models. For example, Raschke et al. [36] propose a cognitive 
model based on ACT-R that simulates visual search strategies. Their motivation 
is to build a simulation tool similar to CogTool that allows automatic, thus non-
empirical, evaluation of visualizations. In contrast to CogTool, which is based 
on an extended version of Keystroke-Level Model [9], their model is trained on 
eye fixations. Although their work does not provide any concrete implementation, 
other researchers have demonstrated that models based on ACT-R can simulate 
eye movements on simple line charts with high confidence [35]. Their model even 
provides vocal output and, thus, is able to simulate graph comprehension with 
results close to human level. From a technical viewpoint, cognitive architectures 
like ACT-R have some limitations that prevent their adoption to more complex 
tasks. For example, Heine et al. [19] advocate the use of probabilistic models, 
like Dynamic Bayesian networks, in the context of modeling human cognition. 
Probabilistic models could provide a unified mathematical model toward human 
cognition and allow to describe variation of factors that are not explicitly modeled. 
This is a strong advantage over ACT-R that depends on explicit rule-based modeling, 
which does not scale well for sophisticated visualizations.

https://www.cogtool.org
https://www.cogtool.org
https://www.cogtool.org
https://www.cogtool.org
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10.5 Example Scenarios 

Visualization evaluation could benefit from the aforementioned study designs, the 
explainability of observations, and cognitive architectures. We exemplify this, based 
on two previous eye tracking studies: one on the design of metro maps [33] and one 
on the evaluation of parallel coordinates plots [34]. We discuss how these studies 
could be enhanced and extended by adopting ideas from the previous sections of 
this chapter. 

10.5.1 Overview of Scenarios 

Scenario 1: Metro Maps 
Investigating the readability of metro maps is a challenging field of research, but 
the gained insights are valuable information on how to find design flaws, enhance 
the design, and make the maps more understandable to travelers [7]. Netzel et 
al. [33] compare color-coded and grayscale public transport maps with an eye 
tracking study. The major outcome is that color is an important ingredient to 
reduce the cognitive burden to follow lines. Eye tracking was essential in this 
study to understand the strategies participants applied to solve a route finding task 
between a start and a target station (Fig. 10.4). The analysis showed that color 
maps led to much longer saccades, and it was hypothesize that colored lines made 
participants feel safe and, hence, the route finding tasks could be answered faster 
and more reliably. In contrast, in grayscale maps, the participants’ eyes moved with 
significantly smaller saccades to trace a line reliably, which was due to missing 
color that would otherwise have helped to visually and perceptually separate the 
metro lines from each other. A practical result of this eye tracking experiment for 
the professional map designer is that color is crucial for route finding tasks, and 

Fig. 10.4 Scenario 1: Metro maps in color (left) and in gray scale (right) have been compared for 
solving a way finding task from a start (hand) to a target location. Eye tracking was measured to 
identify differences in the reading behavior of both conditions. Figure reprinted by permission of 
Taylor & Francis Ltd from Netzel et al. [33]
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Fig. 10.5 Scenario 2: Eye tracking was applied to compare how people compare distances 
between three points (A, B, and C) in scatterplots (top) and parallel coordinate plots (bottom). 
Figure reprinted by permission of Elsevier from Netzel et al. [34]. Copyright 2017 Zhejiang 
University and Zhejiang University Press. Licensed under the CC BY-NC-ND 4.0 license (https:// 
creativecommons.org/licenses/by-nc-nd/4.0/) 

hence the much cheaper printed variants in gray scale would obviously be counter-
productive for the business, although the costs are much lower. 

Scenario 2: Scatter and Parallel Coordinates Plots 
The second example of a study investigates the assessment of relative distances 
between multidimensional data points with scatterplots and parallel coordinates 
plots [34] (Fig. 10.5). The authors performed an eye tracking study and showed 
that scatterplots are efficient for the interpretation of distances in two dimensions, 
but participants performed significantly better with parallel coordinates when the 
number of dimensions was increased up to eight. With the inclusion of eye tracking, 
it was possible to identify differences in the viewing of the two visualization types 
considering fixation durations and saccade lengths. The authors further introduced 
a visual scanning model to describe different strategies for solving the task. With 
the help of eye tracking, a bias toward the center (parallel coordinates plot) and 
the left side (scatterplots) of the visualizations could also be measured, which is 
important for the design of such plots considering where participants will potentially 
spend most of their attention. However, understanding clear visual attention patterns 
like following a line as described in the former eye tracking study is not possible 
here since either the diagram consists of crowds of points (scatterplot) or a lot of 
crossing and partially occluding polylines (parallel coordinates plot). Hence, the 
reading behavior is more complex and harder to model than in Scenario 1.
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10.5.2 Potential Extensions 

In-the-Wild Studies 
As described in Sect. 10.2.2, studies in the wild provide a higher realism for 
experimental outcomes. For Scenario 1, this is highly desirable because the 
interpretation of metro maps is a task performed by many people in everyday 
situations. For the sake of controllability, stimuli and task were adjusted to fit 
to a laboratory setting: People were watching metro maps on a screen with start 
and goal clearly highlighted. The situation in a real metro station would differ 
significantly. Numerous confounding factors such as distractions by other people, 
no clear identification of start and goal, and other potential stress-inducing factors 
might influence the results of how people look at such a map. 

Scenario 2, in contrast, involves visualization techniques (i.e., parallel coordinate 
plots) that are less known to people. An application in the wild would presumably 
take place with domain experts and data scientists rather than a more general 
audience of students, as it was the case in the conducted study. Furthermore, the 
set of performed tasks would be extended in comparison to the lab study. However, 
for the hypotheses of the original experiment, the expertise of the participants 
was not the determining factor since the study aimed to analyze general behavior. 
For measurements over longer time periods, the experts could potentially show 
additional behavior patterns and learning effects, while general behavior aspects 
should not change. 

Collaborative Studies and Pair Analytics 
The investigation of metro maps in Scenario 1 is often an individual task but is in real 
life also performed collaboratively. Similar to the application of the task in the wild, 
the analysis of collaborative task solving has the potential to reveal details on how 
decision-making is performed. Scenario 2 can be imagined for typical analysis tasks 
involving domain and visualization experts. In both scenarios, the dialog between 
participating people provides valuable information on a qualitative level. Scenario 1 
provides the possibility to perform a symmetrical setup where both persons have the 
same prerequisites and solve the task together. In Scenario 2, the integration of the 
visualizations in a visual analytics framework has the potential to focus more on a 
pair analytics approach where people with different fields of expertise (i.e., domain 
and visualization expert) work together to solve the task. 

Furthermore, measuring the gaze behavior of both persons indicates periods 
when they potentially share visual attention and when they might be confused, 
e.g., searching for the region the other person is talking about. Hence, eye tracking 
helps evaluating not only the visualization at hand but also the interaction between 
persons. 

Mixed Methods 
Qualitative and quantitative evaluation combined provide a more comprehensive 
understanding of the research topic than each method on its own. Scenarios 1 and 2 
mainly focused on the quantitative evaluation of traditional performance measures 
and established eye tracking metrics. However, with respect to the analysis of visual 
strategies, both studies included visual analysis for the qualitative assessment of
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recorded scanpaths. We argue that such observations will become more important 
for experiments whenever eye tracking is involved. Furthermore, additional data 
(e.g., think-aloud, interaction logs) will be necessary to include in a data integration 
step to provide a new, more thorough view on the participant’s behavior. 

Cognitive Models 
Cognitive models to predict the scanpath of a participant and the efficiency of 
wayfinding tasks would be beneficial for the design of metro maps in Scenario 1. 
Although different strategies for solving the task could be identified, a generalized 
model was not included in the results of the study. The study was one of the 
first in this domain where it was important to identify general strategies. For a 
comprehensive model, additional data for different levels of expertise might be 
necessary. Here, map designers and map readers are two different target groups that 
potentially focus on different aspects of the map and viewing tasks might differ 
significantly between such groups. An implicit model of strategies was applied 
for the manual annotation of paths, imprecise measures of line tracing. Future 
models could also consider psycho-physical measures, for example, just noticeable 
differences to be able to separate close-by metro lines. In the wild, saliency models 
will also play an important role for the orientation while searching for start and goal 
locations. 

The design of the study in Scenario 2 was based on some assumptions made 
from theory and observations in pilot experiments. Netzel et al. provided a 
handcrafted model (Fig. 10.6) on the different strategies during the reading process 

Fig. 10.6 Strategy model for the visual comparison of multidimensional data points with parallel 
coordinate plots. Netzel et al. [34] identified two strategies, i.e., axis-based and interior area 
comparison, and comprised them in a handcrafted behavior model. Figure reprinted by permission 
of Elsevier from Netzel et al. [34]. Copyright 2017 Zhejiang University and Zhejiang University 
Press. Licensed under the CC BY-NC-ND 4.0 license (https://creativecommons.org/licenses/by-
nc-nd/4.0/)
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of the visualization. This model was guided by the hypotheses of the study. In 
future research, such models could be generated more systematically, informed by 
theoretical perceptual or cognitive models from psychology. 

10.6 Call for Actions 

Based on our previous observations, we have identified the following interesting 
points for future development and calls for actions. 

Translational Research 
Many early guidelines in visualization were informed by perceptual and cognitive 
science, like efficient visual encoding, Gestalt laws [24, 43], or feature integration 
theory [16, 39]. However, there is lack of guidelines that inform design decisions for 
visual analytics systems [37] since current cognitive models are good at explaining 
cognitive processes on well-defined tasks and simple visual stimuli but are less 
applicable to the aforementioned scenarios that have become prevalent in today’s 
systems [17]. This line of research offers great potential for translational studies 
since psychology and visualization research would equally benefit from such results. 
Distributed cognition could be a promising approach toward translational studies 
of that kind since it provides a more holistic view of the way humans reason 
and think. It acknowledges the fact that humans live in materialistic and social 
environments, and thus, it emphasizes the importance of contextual factors in human 
cognition [21]. 

Best Practices 
This book chapter only provided a high-level conceptual view on evaluation strate-
gies. So far, our envisioned evaluation strategies have not yet been implemented 
in real-world empirical studies. Many challenges are left unanswered, such as 
how to practically design, conduct, and evaluate data-rich empirical studies. It is 
particularly important to provide researchers with a tool set to perform sophisticated 
data analysis with minimal effort. There is also need for the whole community of 
researchers to agree upon a proper way to report results of such studies. 

Interdisciplinary Research Venues 
Psychologists’ core topics are often disconnected from topics relevant for visualiza-
tion research. Yet, there are some successful examples of combining communities, 
for example, at the Symposium on Eye Tracking Research and Applications (ETRA). 
Such events provide great opportunities for interdisciplinary discourse and estab-
lishing collaborations. However, publication strategies and research topics might 
significantly differ between communities. Hence, a fusion of expertise just by 
project collaborations might cover some research questions, but from a long-term 
perspective, other solutions are necessary. A key question, of course, is How 
can we integrate the expertise from both research fields in a common research 
endeavor? We think that activities such as this workshop or our own experience
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with the ETVIS workshop1 and joint research centers (like SFB-TRR 1612 ) are  
a good way to go but are alone not sufficient and need further action. Building a 
research area of visualization psychology could be a viable means, for example, 
by establishing publication and other presentation opportunities that work for 
visualization researchers, psychologists, and social scientists alike, by setting up 
a canon of teaching new students, and by lobbying for funding possibilities for such 
interdisciplinary work. 

Psychology Education 
Although many design principles are based on perceptual and cognitive theories, 
in-depth psychological background knowledge is often not part of the education 
for visualization. Researchers starting with eye tracking studies are confronted with 
learning eye tracking methodology, which is, starting with proper calibration to a 
comprehensive analysis of the data, a complex field on its own. As a consequence, 
deeper knowledge of a whole new research field, i.e., psychology, is hard to achieve 
within the short time span of an average PhD student’s career. 
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Part III 
Visualization Psychology 

from an Experimental Perspective 

Strong theory can shape the ways we build visualizations. However, theories make 
assumptions about the state of the world, such as all people sharing the same 
cognitive traits or a common goal, that may fail in practice. Visualization use is 
complex: people and data exhibit unique characteristics, and what people look to 
learn from data often changes dynamically over the course of an analysis. Given 
this complexity, how do we know if a theory holds for a given data set, analysis 
goal, or visual design? Visualization’s complexity provides researchers with a vast 
space of opportunities to test theories using a range of experimental techniques. The 
final part of this book focuses on how we apply innovative experimental methods to 
better understand visualization psychology. 

Visualization research has historically been grounded in design and engineering 
rather than experimental science, focusing on novel techniques and algorithms for 
surfacing invisible patterns in data and borrowing inspiration from psychology to 
fill in key gaps in our knowledge. However, a growing body of work inspired by 
psychological methods employs empirical techniques to better characterize how 
people use visualizations. Such controlled studies enable researchers to investigate 
how well theoretical assertions translate into the complex space of visualization 
use. Visualization can draw on methods from psychology to better understand the 
cognitive implications of specific phenomena and lend credence to (or challenge) 
long-held design heuristics. Psychology can draw on a range of interface designs, 
including visual representations and interactions, to probe theoretical questions 
about how people interpret visual information. 

The following five chapters cover a range of subjects from specific perceptual 
characteristics associated with simple visualizations such as scatterplots to higher-
level cognitive processes involved in translating data into knowledge. We open 
with an experiment examining the role of task—the knowledge someone seeks 
to gain from a visualization—in understanding what information people attend 
to in visualizations (Chap. 11). The subsequent chapter extends this idea to 
investigate how changing properties of data may interact with task to shift this 
attention (Chap. 12). The focus then moves to individual differences reflected by 
specific personality traits, namely conscientiousness—an individual’s tendency to
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be diligent and organized in their work (Chap. 13). The book concludes with two 
chapters examining higher-level cognitive processes in visualization. Chapter 14 
explores how the ways we communicate uncertain information change our decision-
making abilities. We close with an investigation of how individual observations 
come together to build knowledge through a process called sensemaking (Chap. 15). 

The work in this section emphasizes the importance of coupling theory and prac-
tice through empirical methods. Looking forward, the discussions and approaches 
introduced in this chapter exemplify how theories and methods from psychology 
can help us understand how people use visualizations. The outcomes of such 
experiments can help build and refine theories of how people work with visual 
information and craft new guidelines for precise and effective data communication 
that consider a myriad of factors when working with visualizations. 

Part III Editor: Danielle Albers Szafir 

University of North Carolina-Chapel Hill, USA



Chapter 11 
Task Matters When Scanning Data 
Visualizations 

Laura E. Matzen, Kristin M. Divis, Deborah A. Cronin, and Michael J. Haass 

Abstract One of the major challenges for evaluating the effectiveness of data 
visualizations and visual analytics tools arises from the fact that different users 
may be using these tools for different tasks. In this chapter, we present a simple 
example of how different tasks lead to different patterns of attention to the same 
underlying data visualizations. The experiment used eye tracking to record where 
people looked in scatterplot visualizations when given different tasks. We argue that 
the general approach used in this experiment could be applied systematically to 
task and feature taxonomies that have been developed by visualization researchers. 
Using eye tracking to study the impact of common tasks on how humans attend 
to common types of visualizations will support a deeper understanding of visual-
ization cognition and the development of more robust methods for evaluating the 
effectiveness of visualizations. 

11.1 Introduction 

What makes a data visualization effective? Evaluating visualizations can be very 
challenging and is the subject of much research and debate [6, 20, 29, 33, 39]. 
Members of the visualization research community have called for evaluation 
approaches that assess how well visualizations support their viewers’ cognitive 
needs [5, 11, 26, 41]. From this perspective, an effective visualization successfully 
exploits its viewers’ cognitive processes to draw their attention to relevant informa-
tion, minimize their attention to irrelevant information, and increase the likelihood 
of correct interpretation. In order to meet those requirements, visualization designers 
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need to be able to account for the experience, expectations, and biases of the viewer 
in addition to the low-level, perceptual properties of the data visualization. 

There is a growing body of research on how the perceptual aspects of visu-
alizations influence viewers’ cognitive processes. For example, researchers have 
demonstrated that increasing the visual saliency of task-relevant information can 
improve task performance [10, 14, 15, 18, 28, 30, 38] and that changing the visual 
representation of a dataset can change how viewers interpret it [8] and their biases 
in interpretation [31]. However, there has been relatively little research on how 
different tasks impact viewers’ attention to different aspects of visualizations. Visual 
saliency is driven by low-level visual features, such as color and contrast, which are 
easily measured. There are multiple models that use these features to predict which 
parts of an image (e.g., [13, 19]) or a data visualization [25] will draw viewers’ 
attention. However, these models capture only the stimulus-driven aspects of human 
attention. The viewer’s task drives their visual attention from the top down and can 
override these stimulus-driven effects [7, 15, 21, 27]. 

Prior eye-tracking research has shown that changing a person’s task changes 
where they look in a natural scene (e.g., [16]). It stands to reason that changing a 
person’s task would change where they look in data visualizations as well. However, 
the visual properties of many common types of data visualizations are quite different 
from those of natural scenes [24, 25]. In visualizations, visual cues such as color 
and shape are used deliberately, to convey specific information to the viewer. In 
a well-designed visualization, those same features might help to support multiple 
tasks, such as identifying trends, making comparisons, or looking up specific values. 
Visualizations often incorporate text, such as titles and axis labels, which draw the 
viewer’s attention even when they do not have high visual saliency [25]. These text 
cues may be crucial for understanding the visualization, so viewers may read them 
regardless of their task. Thus, we might expect that changing the task might have 
little impact on patterns of attention to data visualizations. 

It is important to understand whether or not this is the case, because it has 
important implications for evaluations of data visualizations. Saliency maps are 
useful for evaluating whether the most important features of a visualization are also 
the most visually salient. However, different aspects of the visualization may be 
important for different tasks. If those task differences impact which parts of the 
visualization the viewers pay attention to, saliency-based evaluations become less 
meaningful. 

Since data visualizations are often designed with specific tasks in mind (i.e., 
identifying trends or clusters, comparing values, or identifying outliers), it may 
be possible to incorporate some task-based features into visual saliency models 
for common types of data visualizations (reference to Chap. 12). But first we 
need to understand how much task influences patterns of eye movements for data 
visualizations. 

In this chapter, we present a simple experiment to illustrate this point. In this 
experiment, participants viewed scatterplots and were tasked with describing the 
trend for half of the stimuli and describing the outliers for the other half (with the 
stimulus-task groupings counterbalanced across participants). We hypothesized that
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the two different tasks would lead to two different patterns of eye movements in 
response to the same physical stimuli, with participants allocating their attention to 
features of the plots in response to the demands of the task. 

11.2 An Experiment on the Impact of Task 

Thirty participants (7 males; mean age . = 29.57, stdev . = 13.79) were recruited from 
the University of Illinois community and were compensated $20 for their time. 
All participants were tested for color vision deficiencies (24-plate Ishihara Test; 
Ishihara, 1972) and near vision acuity prior to completing the study. This experiment 
was part of a larger project, and these same participants also completed the cluster 
comparison experiment reported in Chap. 12 of this book [9]. 

11.2.1 Materials 

The participants saw 32 scatterplots consisting of four unique plots for each of eight 
types of trends: positive linear, negative linear, flat, sinusoidal (cyclical), positive 
logarithmic, negative logarithmic, positive quadratic, and negative quadratic. All 
of the stimuli were created in R Software [37] from simulated data, using the 
standard plotting function to create simple scatterplots. Each stimulus consisted 
of 100 data points (open circles) plotted in black on a white background. Each 
graph was labeled with a title and axis labels. The simulated data were drawn from 
Gaussian distributions, and the data points representing the trend were constrained 
to fall within two vertical standard deviations of the trend function. Half of the plots 
of each type had two outliers and half had four. The outliers were at least four 
standard deviations away from the trend function. Each image was 1000 pixels in 
height. Examples of the stimuli are shown in Fig. 11.1. 

The task (describing the trend or describing outliers), data pattern (positive or 
negative linear, sinusoidal, positive or negative logarithmic, flat, and positive or 
negative quadratic), and the number of outliers (2 or 4) were manipulated within 
subjects. 

11.2.2 Procedure 

The participants completed the experiment in a dimly lit sound attenuating booth, 
seated at a nominal viewing distance of 0.8 meters from a computer monitor (0.932 
. × 0.523 meters; 1920 . × 1080 pixels). Their eye movements were recorded with a 
Smart Eye Pro eye tracker. Prior to completing each task, participants underwent 
the standard Smart Eye camera setup procedure and 9-point calibration.
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Fig. 11.1 Two representative scatterplot stimuli. The example on the left shows a positive linear 
trend with four outliers. The example on the right shows a quadratic trend with two outliers 

Each trial began with a fixation cross that was presented in the center of the 
screen for 1000 milliseconds (ms). Then one of the scatterplot stimuli was presented 
in the center of the screen on a white background. There was a 500 ms interstimulus 
interval between trials. 

Participants viewed each stimulus for up to 10 seconds, but they could end the 
trial sooner than 10 seconds if they were ready to make their response. When 
participants were ready to respond (or when the 10-second time limit had been 
reached), they advanced to a blank white screen. Then they verbally described the 
trend or the outliers in the scatterplot (depending on condition) to the experimenter, 
who wrote down their responses and asked for further clarification if necessary. 
The participants’ verbal responses were also captured via audio recordings. The 
participants were not given feedback about their responses. 

The task was divided into three sections: a practice session and two blocks of 
stimuli. During the practice session, participants worked through two example stim-
uli and were given the opportunity to ask the experimenter for further clarification. 
In the first block of experimental trials, half of the participants described the trend 
in the data and half of the participants described the outliers. The participants then 
switched tasks for the second block of stimuli. Each block contained 16 scatterplots, 
with two of each of the eight types of trends, one of which had two outliers and one 
of which had four.
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11.3 Results 

Two raters independently scored each participant’s description of each scatterplot 
to ensure that the participants produced reasonable responses for each task. The 
responses indicated that the participants understood both tasks and appropriately 
focused their responses on the trend or on the outliers depending on the task 
condition. The participants accurately described the trend for 87% of the trials. 
When describing the outliers, participants missed one or more of the outliers on 
200 out of 398 trials (50.3%). There were only 20 trials in which participants falsely 
identified an extra outlier (5.0%). 

Fixations were calculated using Smart Eye’s default algorithm, where any sample 
for which the velocity over the preceding 200 ms is less than .15◦/s is deemed a 
fixation. The first fixation in each trial was excluded from the analysis, as was 
any fixation with a duration less than 100 ms. Each stimulus was divided into the 
following regions of interest (ROIs): Outliers, Trend, Title, Axes, Axis Labels, and 
Other. The “Other” ROI corresponded to the white space inside of the scatterplot that 
did not contain any data points. An example of the ROIs for one stimulus is shown 
in Fig. 11.2. The ROIs were defined by drawing a polygon around each element of 
the graph, conforming closely to the edges of the object or text. When assigning 
participants’ fixations to the ROIs, a buffer equivalent to one degree of visual angle 
was added to the coordinates of each ROI. If the center of a fixation fell within the 
ROI or within the buffer around the ROI, it was assigned to that ROI. Any fixations 

Fig. 11.2 An example of the regions of interest used in the eye-tracking analysis, including the 
Title (red), Axes (green), Axis Labels (turquoise), Trend (orange), Outliers (yellow), and Other 
(blue)
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Fig. 11.3 Average proportion of fixations to each region of interest for the outlier and trend tasks 

within the white space inside of the scatterplot that could not be assigned to the 
Outlier or Trend ROIs were assigned to “Other.” 

In this experiment, we were interested in how visual attention, as reflected 
by patterns of eye movements, changed in response to different tasks. A mixed 
effects model (fit with the lme4 package in R software; [2]) with a fixed effect 
for task and random intercepts for participant and stimulus (using Satterthwaite 
approximation for degrees of freedom; see [23]) revealed that overall, participants 
had more fixations per trial and shorter fixation durations in the outlier task than in 
the trend task (all .t’s > 10.00, .p’s < 0.001). This pattern of shorter, more numerous 
fixations in the outlier task condition is consistent with a visual search process [34]. 

Task also influenced which regions of the graph participants fixated most 
frequently. The proportion of fixations to each type of ROI was calculated for 
each participant and stimulus. The results are shown in Fig. 11.3. The participants’ 
task had a substantial impact on where they allocated their attention within the 
scatterplots. A mixed effects model was used to predict the proportion of fixations 
as a function of the fixed effects of task and ROI, with random intercepts for 
subject and stimulus. For the trend description task, there were significantly higher 
proportions of fixations to the Trend ROI as well as the Title, Axis, and Axis Label 
ROIs. For the outlier description task, the proportion of fixations was significantly 
higher for the Outlier ROI and the Other ROI (all t-statistics .> 2.00 and p-values 
.< 0.05). The high proportion of fixations to the Other ROI was likely due to 
participants searching the graphs for outliers as well as the relatively small size 
of the Outlier ROIs. 

In addition to examining the proportion of fixations in each ROI, we also 
investigated how attention to the ROIs unfolded over time under the different task 
conditions. Figure 11.4 shows the probability of visiting each ROI over the time
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Fig. 11.4 The probability of visiting each region of interest over the course of the trial for the two 
task conditions 

course of the trial for each task. The two tasks produced very different patterns of 
fixations throughout the trial. In the trend task, participants’ attention went first to 
the Trend ROI, then to the axes. Later during the trial, there was a high probability 
of the participants visiting both the trend and the axes. The probability of the 
participants visiting the Outlier ROIs was low throughout the time course of the 
trial. In the outlier task, the probability of participants visiting the Outlier ROIs was 
higher throughout the trial, as was the probability of visiting the Other ROI, which 
has the highest probability of any region throughout most of the trial. As described 
above, this is likely due to participants searching for the outliers. The participants 
also had a relatively high probability of looking at the trend and the axes in this task 
condition, but that probability was lower than in the trend description condition, 
particularly later in the trial. 

11.4 Discussion 

In this task, we observed differences in patterns of eye movements when participants 
were given different tasks using the same data visualizations. The participants per-
formed the two different tasks successfully, although some outliers were overlooked. 
The eye-tracking data indicated that there were differences in the overall allocation 
of attention to different elements within the graphs, in addition to different patterns 
of attention over the course of a trial. The trend and axes received a relatively high
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proportion of the participants’ fixations, regardless of condition, but the fixations on 
the outliers were dramatically influenced by the participants’ task. 

We also found task-driven differences in the number and duration of fixations: 
participants tended to make many short fixations in the outlier condition while 
making fewer, longer fixations in the trend condition. The eye movement patterns in 
the outlier task are consistent with participants engaging in visual search, a task 
that typically encourages more eye movements and short fixations [7, 27]. The 
long-duration fixations characterizing the trend condition may have better allowed 
participants to extract the “gist” of the scatterplot (e.g., via ensemble encoding; see 
[35]). 

The classic experiment by Yarbus (1967) demonstrated that a person’s task and 
goals impacted their eye movements, and numerous subsequent studies have found 
similar effects for natural scenes [3, 12, 17]. Our experiment demonstrates that the 
same is true for data visualizations. While this is a very straightforward example, 
it shows how research along these lines could have implications for visualization 
design and evaluation. In this case, if the designer knew that the outliers might 
be important to users’ tasks, they could choose visual representations that make 
the outliers more salient and easier to locate. For more complex visualizations, 
assessing changes in fixation patterns or scan paths for different tasks could reveal 
patterns that might not be easy to predict. This kind of research could also reveal 
cases where visual-spatial and cognitive biases [32, 40] are likely to impact viewers’ 
interpretations. 

The visualization community has developed numerous taxonomies that break 
down common visualization types and link them to common tasks, cf. [1, 4, 22, 29, 
36]. These taxonomies could serve as an entry point for visual cognition researchers 
and as a framework for systematic experimentation. For example, [22] provide a 
taxonomy of objects and tasks that are common in graph visualization. Researchers 
could use eye tracking to test how different tasks change patterns of fixations to 
the same underlying graph objects. This research could support the development of 
new visualization methods for that domain. It could also support the development 
of widely applicable evaluation methods that take both bottom-up and top-down 
features into account to determine whether a graph visualization effectively meets 
the cognitive needs of its intended users. 
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Chapter 12 
Perceptual Biases in Scatterplot 
Interpretation 

Kristin M. Divis, Laura E. Matzen, Michael J. Haass, and Deborah A. Cronin 

Abstract The scientific community heavily relies on data visualizations for com-
munication, precipitating the need to better understand what makes for a “good” 
data visualization (e.g., informing data visualization evaluation or saliency tools). In 
addition to the underlying mathematical or bottom-up properties of a visualization, 
designers must also account for the influence from top-down factors such as the 
viewer’s goal or perceptual biases. In the current study, we asked participants to 
compare two clusters of data points in a scatterplot (similar to a multidimensional 
data reduction comparison task). We manipulated both the underlying mathematical 
properties of the data set and the decision-making task. We found evidence for 
visual–spatial biases and differences in overt attention patterns (eye movements), 
even when the compared clusters were mathematically equivalent. These results 
demonstrate how task and perceptual biases may impact viewers’ understanding 
of relationships between variables in a multidimensional space, possibly leading to 
error or systematic biases in analysts’ interpretation of the plotted data. 

12.1 Introduction 

Data visualizations serve an important role in scientific inquiry and communi-
cation. They are widely relied upon throughout the scientific community—from 
interpretation of findings in academic journals to high consequence decision-
making in domains such as disaster response and national security. A good data 
visualization can allow its viewer to quickly identify important trends, interesting 
groups, or outliers in a large data set or to rapidly grasp the take-home message 
of an entire study. But what makes a data visualization “good”? Evaluating 
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visualizations can be very challenging and is the subject of much research and 
debate [8, 34, 53, 58, 65, 69]. Members of the visualization research community 
are calling for evaluation of visualizations by examining the extent to which 
they support their viewers’ cognitive needs [7, 21, 48, 76]. From this perspective, 
a “good” visualization successfully exploits its viewers’ cognitive processes to 
draw their attention to relevant information, minimize their attention to irrelevant 
information, and increase the likelihood of correct interpretation. In order to meet 
those requirements, visualization designers need to be able to account for the 
experience, expectations, and biases of the viewer in addition to the low-level, 
perceptual properties of the data visualization. However, there is not yet a coherent 
theory of visualization cognition for designers to draw upon (cf. [55]). While it is 
clear that many factors influence viewers’ interpretation of visualizations, whether 
by improving viewers’ ability to understand the underlying data (cf. [70]) or by 
inducing cognitive biases [57], there are many aspects of visualization cognition that 
have not yet been explored by researchers. Gaining a deeper understanding of how 
factors such as the viewers’ task and visual–spatial biases impact their interpretation 
of visualizations will help to advance visual cognition research as well as have 
practical applications in designing and evaluating visualizations. In the research 
reported here,1 we aim to begin addressing these questions for interpretation of 
clusters within scatterplots, a type of data visualization widespread in engineering 
practice and the scientific literature. 

12.2 Bottom-Up and Top-Down Attention in Data 
Visualizations 

The patterns of attention that are observed when viewers interpret data visualizations 
can be understood from the perspective of bottom-up and top-down visual attention. 
This approach grounds research on visualizations in the larger field of visual 
cognition, in addition to providing avenues for developing practical, cognition-
based tools for evaluating visualizations. Bottom-up visual attention is drawn 
automatically to salient, low-level visual features (those with physical properties 
such as color or line orientation that differ from their surroundings); top-down 
visual attention is driven by the observer’s goals, expectations, and prior experience 
[25, 73–75]. 

Several research groups have suggested that visual saliency may be a useful 
tool for evaluating the extent to which visualizations support their users’ cognitive 
processes [30, 33, 45, 61, 68]. Models of bottom-up visual attention based on visual 
saliency make reasonable predictions of where participants will look in natural 
scenes (e.g., [28]), man-made scenes (e.g., [3]), and abstract data visualizations

1 This study was part of a larger project examining human comprehension of data visualizations; 
see also Chapter 11 in this book [43]. 
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(e.g., [45]). An effective visualization should draw viewers’ attention to the most 
important or task-relevant information. Indeed, increasing the visual saliency of 
task-relevant information has been shown to affect user performance in day-to-
day decision-making tasks [52]; in virtual reality [67]; and, importantly, in data 
visualization interpretation [20, 23, 24, 26, 54]. Visual saliency can also contribute to 
cognitive biases when viewers rely too heavily on salient features when interpreting 
visualizations [57]. Thus, a reasonable first pass at assessing the effectiveness of a 
visualization is to use saliency models to confirm that the aspects of a visualization 
that the designer and users deem most important are also the most visually salient. 

However, traditional visual saliency models (e.g., [28]) do not include any 
information about top-down visual attention. Top-down processing has a strong 
influence over where people choose to look and can override the bottom-up draw 
of visually salient features [35, 36]. For instance, social cues [5], differing task 
priorities [9, 13, 19, 24, 36, 51], expertise [38], and prior experiences [11, 41] 
can all drive top-down attention. Top-down attention is particularly important 
in understanding how people process data visualizations. Unlike natural scenes, 
visualizations often require the viewer to have some prior knowledge about how 
to make sense of a set of abstract data visualizations. They may arbitrarily map 
meaning onto specific colors and shapes [53], include text and numbers [44], 
and draw on various conventions related to the use of axes and legends, visual 
representations of uncertainty, and so forth. The viewers’ goals influence where they 
look in a visualization, and recent studies have demonstrated that participants with 
different goals looking at the same visualization will inspect it differently [49, 50]. 
In addition, visualizations are often developed for specific groups of people with 
expertise in a scientific or technical area, and they may be used differently by people 
with different levels of expertise [34, 46]. 

Recent research has used the dual-process account of decision-making to propose 
a cognition-based framework for investigating how people make decisions using 
visualizations [56]. Dual-process theories posit that that people make decisions 
in one of two ways. Type 1 decisions are made rapidly and automatically [17]. 
Various researchers have described the type of processing that produces Type 1 
decisions as the result of intuitive, heuristic processing [10, 16, 31, 32] or associative 
processing [64]. In contrast, Type 2 decisions are slow, sequential, and effortful, 
requiring analytic processing that consumes working memory resources [17, 18, 32]. 
Padilla and colleagues [56] suggest that visual saliency in visualizations supports 
Type 1 decision-making by drawing viewers’ attention to the salient features and 
by producing visual–spatial biases. The authors define visual–spatial biases as 
heuristics that are elicited by the visual encoding techniques used in visualizations, 
and they note that these biases can be beneficial or detrimental, depending on the 
circumstances. Visual–spatial biases are more complex than visual saliency alone. 
However, we propose that if these biases support Type 1 processing, they are 
processed automatically and could be incorporated into visual salience models for 
use in evaluating the effectiveness of visualizations.
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12.3 Expanding the Effectiveness of Saliency Models 
as a Visualization Evaluation Tool 

In addition to developing saliency models that are predictive of bottom-up attention 
and visual–spatial biases, it may be possible to identify factors that consistently 
affect top-down attention for viewers who are using visualizations to make deci-
sions. Text typically has low visual saliency from the perspective of traditional 
saliency models, even though it is very important from a top-down perspective. 
In our own prior research [45], we demonstrated that incorporating text as a 
feature in a saliency model dramatically improved the model’s performance when 
predicting where viewers looked in data visualizations. This example illustrates that 
it is feasible to develop saliency models that incorporate both bottom-up and top-
down features, particularly when there are top-down features that draw viewers’ 
attention in consistent ways. For example, if certain types of visual encodings elicit 
consistent visual–spatial biases, it should be possible to incorporate those biases into 
saliency models as well. Doing so would produce more effective tools for evaluating 
visualizations and assessing their impact on decision-making. Since visualizations 
are typically “born digital” and use common conventions for conveying specific 
types of information, it is feasible to use their visual features to predict viewers’ 
patterns of attention in ways that may not be possible for other types of visual 
stimuli, such as natural scenes [22]. 

12.4 Visual–Spatial Biases with Scatterplots 

In this chapter, we focus on scatterplots, which are widely used in science and 
engineering for analyzing or assessing data sets with two or more dimensions. In 
the data analysis domain, which is our particular area of interest, scatterplots are 
often used to help viewers understand correlations, clusters, or outliers [4, 6, 48]. 
In addition, scatterplots are commonly used to project multidimensional data into 
a two-dimensional space so that users can better understand the relationships 
between the variables in the data set. There are many different methods for doing 
these types of projections and a robust literature focused on evaluating their 
effectiveness [1, 4, 48, 62, 63, 66]. Much of this research has explored low-level 
perceptual features that influence participants’ ability to distinguish clusters of data, 
while a small set of studies have characterized common tasks that users perform 
with dimensionally reduced data and what types of patterns users consider to be 
important (cf. [4, 6, 29]). However, relatively little work exists that bridges the task 
level and the perceptual level. In other words, few studies have investigated how 
a user’s task and the perceptual properties of a scatterplot interact to influence the 
user’s patterns of attention. 

Prior studies investigating how people perceive scatterplots have indicated 
that viewers can rapidly extract information from scatterplots, such as trends
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and correlations [14, 37, 47, 60] or information about the relative properties of 
different classes of data points [20, 39, 40]. Participants tend to be highly consistent 
with one another when making judgments about scatterplots (cf. [12, 20, 60]). 
However, this consistency may be due, at least in part, to pervasive visual–spatial 
biases. For example, people consistently underestimate the correlation between two 
variables when interpreting scatterplots [60]. As another example, [20] indicated 
that participants in their pilot tests used a simple heuristic to decide which class in 
a multi-class scatterplot had the highest mean value: they simply chose the class 
that had the highest point. While the researchers did not report investigating this 
effect in detail, it could indicate that people were using simple heuristics and Type 
1 decision-making when interpreting these scatterplots. 

Regardless of whether participants were asked to evaluate correlations or clus-
ters, the visual properties of the stimuli can lead to different decisions. In the case 
of scatterplots depicting trends, manipulating the slope and variance of the data 
changed participants’ estimates of correlation, even for the same value of Pearson’s 
correlation [14, 37]. Similarly, in the case of multi-class scatterplots, Etemadpour, 
Olk, and Linsen [15] found that factors such as the number of points in a cluster, 
and the cluster’s size, shape, and density all influenced the participants’ decisions 
and patterns of eye movements. In one of their experimental tasks, participants 
were asked to judge which of two clusters was closest to a reference point. The 
density and number of points in each cluster were varied. Participants spent more 
time looking at the sparser cluster and were also significantly more likely to say 
that it was closer to the reference point than the denser cluster. This pattern held 
regardless of cluster size. These patterns of results provide further evidence that the 
visual encoding techniques used in scatterplots can give rise to visual–spatial biases 
that impact viewers’ decision-making. 

12.5 Experiment: Interpretation of Clusters in a Scatterplot 

In light of this prior work, and of our interest in testing the effects of visual–spatial 
biases and top-down factors on participants’ patterns of attention and decisions 
regarding visualizations, we designed a set of research experiments investigating 
interpretation of scatterplots. In the current study, we focused on the interplay 
between top-down attention and the visual features of clusters in scatterplots (see 
also Chapter 11 in this book [43] for additional studies in this line of research). 
We combined a subset of the tasks used by Etemadpour and colleagues [15] and by 
Gleicher and colleagues [20]. Participants were given two clusters of data points 
with an intermediate reference point. For half of the stimuli, participants were 
asked to assign the reference point to one of the two clusters. For the other half, 
participants were asked to judge which cluster had the higher vertical mean. We 
manipulated the density and dispersion of the clusters, as well as their relative 
height and the method used to center the reference point between the two clusters 
(centering based on mean or standard deviation). We hypothesized that the two
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different tasks would lead to two different patterns of eye movements in response 
to the same stimuli. In addition, we hypothesized that the visual properties of 
the clusters would affect participants’ decisions in both tasks. We predicted that 
varying the density, dispersion, and centering of the clusters would induce the use 
of visual–spatial heuristics that would affect the participants’ assessments of the 
relative height of the clusters and their relative distance from the reference point. 

Note that participants viewed identical sets of stimuli, so there were no differ-
ences in perceptual visual saliency that could lead to different patterns of attention 
across tasks. Thus, any differences in eye movements observed across tasks could 
only be due to top-down attention and/or visual–spatial biases induced by the visual 
encoding of the stimuli. 

12.6 Experiment: Method 

In the current study, participants viewed scatterplots showing two clusters of points 
and a central reference point. For half of the stimuli, participants were asked to 
assign the reference point to one of the two clusters. For the other half, participants 
were asked to judge which of the clusters had a higher vertical mean value. The 
assignment of stimuli to each task was counterbalanced across participants. 

12.6.1 Participants 

Thirty participants (7 males; mean age . = 29.57, stdev . = 13.79) were recruited from 
students, faculty, and staff in the University of Illinois community and compensated 
$20 for their time. All participants were tested for color vision deficiencies (24 
plate Ishihara Test [27]) and near vision acuity prior to completing the study. This 
experiment was part of a larger project, and these same participants also completed 
the study reported in Chapter 11 of this book [43]. 

12.6.2 Design 

The task (reference point assignment or cluster height comparison), reference point 
centering (standard-deviation-centered or mean-centered), relative cluster height 
(equal or unequal), cluster density (low or high), and cluster dispersion (low or 
high) were manipulated within subjects.
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12.6.3 Materials 

All stimuli were created in R Software [59] from simulated data using the ggplot2 
software package [72]. The scatterplots had design characteristics similar to those 
used in [15]. Each scatterplot consisted of colored circles outlined in black on a 
white background. The data points formed two clusters, one green and one blue 
(with random assignment of colors in terms of whether the left cluster was green 
or blue), with an intermediate reference point that was colored red. No titles, axis 
labels, or tick marks were provided. 

Clusters were manipulated along the dimensions of density (low or high) and 
dispersion (low or high). Clusters with high density contained more data points per 
square unit of area than those with low density. Clusters with high dispersion were 
more spread out (i.e., higher standard deviation) than those with low dispersion. 
Crossing these two dimensions leads to four types of clusters: Type A: high density 
and low dispersion (40 data points with a standard deviation of 10 units), Type B: 
low density and low dispersion (15 data points with a standard deviation of 10 units), 
Type C: high density and high dispersion (85 data points with a standard deviation 
of 25 units), and Type D: low density and high dispersion (40 data points with a 
standard deviation of 25 units). The clusters were created by drawing simulated 
data from Gaussian distributions with the parameters indicated by each cluster type. 

Clusters were paired in all possible combinations (e.g., A-A, C-D, D-C, etc.) 
to create a total of 80 stimuli. In half of the stimuli, the mean cluster height was 
the same for each cluster in the pair; in the other half, one cluster was higher than 
the other. The placement of the red reference point between the two clusters was 
also varied. For half of the stimuli, the reference point was mean-centered; for 
the other half, it was standard-deviation-centered. When the reference point was 
mean-centered, it was exactly halfway between the horizontal and vertical means of 
the two clusters. When the reference point was standard-deviation-centered, it was 
exactly four standard deviations along the horizontal axis away from the mean of 
each cluster (and mean-centered along the vertical axis for clusters with means at 
the same height or one vertical standard deviation above or below the means of the 
clusters for clusters at different heights). 

12.6.4 Procedure 

Participants completed the experiment individually in a dark room, seated at a 
nominal viewing distance of 0.8m from a computer monitor (0.932 . × 0.523m; 
1920 . × 1080 pixels). Their eye movements were recorded with a Smart Eye Pro eye 
tracker. Prior to completing each task, participants underwent the standard Smart 
Eye camera setup procedure and 9-point calibration. Participants were encouraged 
to sit still during the tasks and to refrain from leaning forward or backward.
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All stimuli were presented in the center of the screen on a white background. 
Each image was 1000 pixels in height, with a variable width to maintain the aspect 
ratios of the stimuli. For all tasks, each stimulus was preceded by a fixation cross 
that was presented in the center of the screen for 1000 milliseconds (ms). There was 
a 500ms interstimulus interval between trials. Participants responded by pressing a 
key on the keyboard to indicate which cluster was higher or which cluster should 
contain the reference point (depending on the task condition). 

The task was divided into three sections: a practice session and two blocks of 
stimuli. During the practice session, participants worked through two example stim-
uli and were given the opportunity to ask the experimenter for further clarification. 
In the first block of experimental stimuli, half of the participants judged the relative 
height of the two clusters and half of the participants assigned the reference point 
to one of the two clusters. The participants switched tasks for the second block of 
stimuli. Each block contained 40 of the 80 scatterplots, with the cluster pairings, 
reference point centering, and relative cluster height counterbalanced across the two 
sets. 

12.7 Experiment: Results 

All statistical tests reported here were held at an .α = 0.05 level (95% confidence 
interval, CI). Exact binomial tests analyzed whether the clusters chosen differed 
significantly from what one would expect based on chance (50%). Except where 
noted, all analyses were run on stimuli with the same mean cluster height. In all of 
the stimuli, the reference point was centered perfectly between the two clusters, 
based on either the mean or the standard deviation of the clusters. Thus, any 
systematic patterns in the participants’ responses were due to visual–spatial biases 
rather than the mathematical properties of the clusters. If the participants were not 
biased by the visual encodings of the clusters, we would expect them to select the 
right and left clusters equally often. 

In both tasks, participants showed a slight bias toward choosing the cluster on 
the right side of the screen (53.6%, CI [50.7%, 56.4%], .p = 0.014 for the cluster 
membership task; 53.8%, CI [49.8%, 57.9%], .p = 0.066 for the cluster height 
task). However, all conditions were perfectly counterbalanced across the left–right 
dimension, so this bias does not systematically change the interpretation of the 
results. All further analyses are collapsed across the left–right dimension.
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12.8 Cluster Membership Task: Behavioral Results 

12.8.1 Density 

Selecting trials in which one cluster had low density and one had high density, we 
analyzed whether relative density of the clusters influenced participants’ decisions 
in the reference point membership task. Overall, participants consistently indicated 
that the reference point belonged to the cluster with high density (more data points 
per square unit). The cluster with high density was chosen 78.8% of the time (CI 
[73.0%, 83.7%], .p < 0.001). This pattern held regardless of whether the clusters 
had low dispersion (high density chosen 81.7%, CI [73.6%, 88.1%], .p < 0.001) 
or high dispersion (high density chosen 75.8%, CI [67.2%, 83.2%], .p < 0.001). It 
also held regardless of whether the reference point was mean-centered (high density 
chosen 78.3%, CI [69.9%, 85.3%], .p < 0.001) or standard-deviation-centered (high 
density chosen 81.7%, CI [70.8%, 86.0%], .p < 0.001). 

12.8.2 Dispersion 

We also examined the influence of low versus high dispersion (how spread out the 
points were) on participants’ preference for reference point cluster membership. 
When collapsing across density (low vs. high) and centering (mean vs. standard 
deviation), no significant effects were found (high-dispersion cluster chosen 52.1%, 
CI [45.6%, 58.6%], .p = 0.561). However, that null result appears to have been 
driven by reference point centering technique leading to opposite effects. When 
the reference point was mean-centered, participants were more likely to indicate 
the reference point belonged to the cluster with a high dispersion (high-dispersion 
cluster chosen 91.7%, CI [85.2%, 95.9%], .p < 0.001). This pattern held regardless 
of whether the clusters had high density (high-dispersion cluster chosen 83.3%, CI 
[71.5%, 91.7%], .p < 0.001) or low density (high-dispersion cluster chosen 100.0%, 
CI [94.0%, 100.0%], .p < 0.001). When the reference point was standard-deviation-
centered, participants were more likely to indicate the reference point belonged to 
the cluster with a low dispersion (low-dispersion cluster chosen 87.5%, CI [80.2%, 
92.8%], .p < 0.001). Once again, this pattern held regardless of whether the clusters 
had high density (low-dispersion cluster chosen 91.7%, CI [81.6%, 97.2%], . p <

0.001) or low density (low-dispersion cluster chosen 83.3%, CI [71.5%, 91.7%], 
.p < 0.001). 

Figure 12.1 shows examples of same-height pairings with different reference 
point centering methods. When the standard deviation of the two types of clusters 
are different (e.g., Type A and Type C), the reference point centering technique has 
a profound influence on perceptual grouping.
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Fig. 12.1 Examples of same-height clusters. Note that Type A and Type B clusters have the same 
standard deviation, as do Type C and Type D clusters. In these cases, the centering method used to 
place the reference point does not appear to have a large influence. However, when clusters with 
different standard deviations are paired, the centering method appears to have a substantial impact 
on the categorization of the reference point 

12.8.3 Nearest Neighbor 

The consistency of the participants’ responses indicates that their decisions were 
influenced by visual–spatial biases. Since participants were making rapid, Type 1 
decisions in this experiment, they may have employed simple heuristics based on 
Gestalt principles to make those decisions [15]. In the case of the reference point 
task, a simple heuristic would be assigning the reference point to the cluster that has 
the point closest to the reference, which takes advantage of the Gestalt grouping 
principle of proximity [71]. The perceptual impact of proximity is particularly 
apparent when the two cluster types have different standard deviations, as shown in 
Fig. 12.3. Again, recall that the reference point was always perfectly centered based 
on the mathematical characteristics of the clusters. Yet when clusters of different 
types are combined, the perceptual impact can be quite striking, with the reference 
point appearing to be much closer to one cluster than the other. 

To investigate whether participants might have used a simple nearest neighbor 
heuristic to make their decisions, we calculated the distance between the nearest 
neighbor in each cluster and the reference point. For 91.3% of the stimuli, the cluster 
with the nearest neighbor was chosen more frequently than the other cluster (CI 
[82.8%, 96.4%], .p < 0.001).
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12.9 Cluster Height Task: Behavioral Results 

For half of the trials, participants were tasked with indicating which of the clusters 
had the highest average value. In half the stimuli, one of the clusters had a higher 
(y-axis) mean value; in the other half of the stimuli, the vertical mean value of 
the clusters was the same. When one of the clusters was higher than the other, the 
participants chose that cluster 88% of the time. Of more interest were the trials 
where the clusters had the same mean height—did participants show a consistent 
bias even when the clusters had identical mean heights? The remainder of this 
section focuses on the results for the same-height clusters. 

12.9.1 Density 

When a cluster with low density and a cluster with high density were paired, 
participants tended to indicate that the cluster with high density had the higher 
vertical mean (79.2%, CI [70.8%, 86.0%], .p < 0.001). This pattern was consis-
tent across centering and dispersion manipulations. It held regardless of whether 
the clusters had low dispersion (high-density cluster chosen 78.3%, CI [65.8%, 
87.9%], .p < 0.001) or high dispersion (high-density cluster chosen 80.0%, CI 
[67.7%, 89.2%], .p < 0.001) and whether the reference point was mean-centered 
(high-density cluster chosen 81.7%, CI [69.6%, 90.5%], .p < 0.001) or standard-
deviation-centered (high-density cluster chosen 76.7%, CI [64.0%, 86.6%], . p <

0.001). 

12.9.2 Dispersion 

When a low-dispersion cluster and a high-dispersion cluster were paired, partici-
pants tended to choose the cluster with high dispersion as having a higher vertical 
mean (70.8%, CI [61.8%, 78.8%], .p < 0.001). It held regardless of whether 
the clusters had high density (high-dispersion cluster chosen 66.7%, CI [53.3%, 
78.3%], .p = 0.013) or low density (high-dispersion cluster chosen 75.0%, CI 
[62.1%, 85.3%], .p < 0.001) and whether the reference point was mean-centered 
(high-dispersion cluster chosen 66.7%, CI [53.3%, 78.3%], .p = 0.013) or standard-
deviation-centered (high-dispersion cluster chosen 75.0%, CI [62.1%, 85.3%], . p <

0.001). In this task, the reference point was irrelevant, so the centering method did 
not influence participants’ judgments.
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12.9.3 Highest Point 

Similar to the nearest neighbor analysis above, the dispersion and density manipula-
tion also influence which cluster tends to have the highest overall point. Participants 
might simply have chosen the cluster with the highest overall point when deciding 
which cluster had the highest mean. We found that participants chose the cluster 
with the highest point 85.0% of the time (CI [70.2%, 94.3%], .p < 0.001). 

12.9.4 Eye Movement Results 

Fixations were calculated using Smart Eye’s default algorithm, where any sample 
for which the velocity over the preceding 200ms was less than 15. ◦/s was deemed a 
fixation. The first fixation in each trial was excluded from the analysis, as was any 
fixation with a duration less than 100ms. 

We first examined overall differences in the number of fixations between the 
two tasks (reference point cluster membership and cluster height, for all stimuli). A 
mixed effects model (fit with the lme4 package in R software [2]) with a fixed effect 
for task and random intercepts for participant and stimulus (using Satterthwaite 
approximation for degrees of freedom; see [42]) revealed that overall, participants 
had slightly more fixations on average in the cluster height task (mean . = 4.75 
fixations, stdev . = 3.64) relative to the reference point task (mean . = 4.59 fixations, 
stdev . = 3.44; t(1900) . = 2.28, .p = 0.023). 

We also examined the proportion of fixations to each of three region-of-interest 
(ROI) categories (cluster, reference point, and other—i.e., the background region), 
as  shown in Fig. 12.2. A mixed effects model predicting proportion of fixations from 
the fixed effects of task (highest cluster vs. reference point membership) and type 
of ROI along with random intercepts for subject and stimuli (using Satterthwaite 
approximation for degrees of freedom) revealed significant simple effects of task 
for each of the ROIs. Relative to the highest cluster task, participants in the 
reference point membership task tended to have a higher proportion of fixations 
to both the reference point ROI (t(5910) . = 6.53, .p < 0.001) and the “other” ROIs 
(t(5910) . = 10.18, .p < 0.001); in contrast, those in the highest cluster task tended to 
have a higher proportion of fixations to the cluster ROIs than those in the reference 
point membership task (t(5910) . = 16.71, .p < 0.001). 

In addition to examining the proportion of fixations in each ROI, we also 
investigated how attention to the ROIs unfolded over time under the different task 
conditions. Figure 12.3 shows the probability of visiting each ROI over the time 
course of the trial for the reference point and cluster height tasks. For both tasks, 
participants consistently looked at the right cluster first and then were similarly 
likely to look at the left or right cluster later in the trial. Participants were more 
likely to look at the reference point ROI throughout the trial in the reference point 
task relative to the cluster height task.
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Fig. 12.2 The average proportion of fixations to each region of interest (ROI) based on task. Error 
bars represent within-subjects standard error of the mean 

12.10 Experiment: Discussion 

The research presented in this chapter demonstrated that different tasks produced 
different patterns of eye movements in terms of the number of fixations, the 
proportion of fixations to each ROI, and the time course of fixations to each ROI. 
This provides additional evidence that, like natural scenes, data visualizations elicit 
different patterns of overt attention under different task conditions. In addition, we 
observed that participants were highly consistent in their judgments of which of two 
clusters was higher and of which cluster should contain an intermediate reference 
point. Even when the clusters had the same mean height or a perfectly centered 
reference point, participants were biased to choose one cluster over the other far 
more often than we would expect by chance. These results show that visual–spatial 
biases can have a profound impact on decisions about clusters in scatterplots. 
These biases may support Type 1 processing and could be incorporated into data 
visualization saliency tools to evaluate the effectiveness of scatterplot visualizations. 

In this experiment, the perceptual features that biased participants toward 
choosing one cluster over another emerged from the mathematical properties of 
the clusters. We manipulated the density and dispersion of the clusters as well as 
the centering method used for the reference point, but we did not manipulate their 
perceptual properties directly. For example, we did not control which cluster had the 
highest overall point, like [20], and we did not deliberately position the reference 
point relative to the clusters to take advantage of Gestalt laws, as did in [15]. Instead, 
we changed the mathematical properties of the stimuli but allowed the points in 
the clusters to fall as they may, generating more naturalistic stimuli. We found 
that simply manipulating the mathematical properties of cluster density, dispersion
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Fig. 12.3 The probability of visiting each ROI over the time course of the trials in the (a) reference 
point and (b) cluster height tasks 

and reference point centering were sufficient for inducing highly consistent visual– 
spatial biases in our participants. 

Participants tended to show a bias toward choosing the cluster on the right-
hand side of the screen, and their patterns of eye movements indicate that they 
consistently looked at the right-hand cluster first, regardless of task condition. It 
appears that they were using the right-hand cluster as the anchor point while inter-
preting the visualization [49, 50]. Similarly, cluster dispersion was a driving factor 
in the participants’ decisions across both tasks. In the cluster height task, clusters 
with high dispersion were judged to be higher than those with low dispersion.
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Of secondary importance was density: clusters with high density were judged to 
be higher than clusters with low density. In the reference point membership task, 
the effect of cluster dispersion was modulated by the method used for centering 
the reference point. When the reference point was mean-centered, participants 
chose the cluster with high dispersion (higher standard deviation). When the 
reference point was standard-deviation-centered, participants chose the cluster with 
low dispersion (lower standard deviation). Cluster density also had a consistent 
effect on their decisions, although it fell to secondary importance after dispersion. 
Participants generally chose the cluster with high density (more data per square 
unit) as opposed to low density. These results contrast those of Etemadpour and 
colleagues [15], who found that participants tended to group the reference point 
with the lower density cluster. The current study reveals the critical importance of 
both cluster dispersion and reference point centering technique on reference point 
categorization. While prior studies focused on additional elements (e.g., cluster 
shape), which may have also influenced the results, they did not account for the 
effect of underlying properties of the data such as dispersion and reference point 
centering technique. Together, these paint a picture of the multi-faceted factors that 
can influence interpretation of how a particular data point relates to clusters in the 
full data set. 

Since we manipulated the mathematical properties of the clusters rather than 
directly manipulating their perceptual properties, it is not clear whether participants 
based their judgments on the overall characteristics of the clusters (density and 
dispersion), on simpler heuristics such as which cluster had the highest point or 
nearest neighbor, or on some combination of the two. In our stimuli, the nearest 
neighbor and highest point metrics were tightly linked to the density and dispersion 
manipulations. This is similar to what is likely to be found in real data sets (i.e., 
higher dispersion clusters are likely to also have the highest points), but it does not 
allow us to truly tease apart the cause of the participants’ visual–spatial biases in the 
current study. This would be an interesting question to explore in future research, 
following up on both the present study and Gleicher and colleagues’ [20] related 
observation that participants in their pilot testing tended to use the highest overall 
point as a heuristic for identifying the class with the highest mean in their intermixed 
multi-class scatterplots. 

Regardless of which of these factors (simple heuristics or underlying mathemati-
cal properties of the clusters) was specifically driving the participants’ decisions, 
the fact that their decisions were so consistent has important implications for 
visualization designers and development of future data visualization saliency tools. 
Data analysts are not computers—just because there are mathematical equivalencies 
in a data set does not mean that the viewer who uses the data visualization to 
make decisions will perceive the same equivalencies. This could be particularly 
problematic for viewers who are using scatterplots to explore the relationships 
between variables in a multidimensional space. Our experiment demonstrates 
that there are perceptual biases that may impact viewers’ understanding of these 
relationships, possibly leading to error or systematic biases. These systematic biases 
can be accounted for –and potentially predicted– in data visualization saliency tools, 
helping designers create more effective data visualizations.
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Chapter 13 
Leveraging Conscientiousness-Based 
Preferences in Information Visualization 
Design 

Tomás Alves, Bárbara Ramalho, Daniel Gonçalves, Joana Henriques-Calado, 
and Sandra Gama 

Abstract Recent research on information visualization has shown how individual 
differences such as personality mediate how users interact with visualization 
systems. Although there is a robust body of research on this relationship, these 
studies focus on a particular subset of personality constructs. Therefore, there are 
still personality traits with untapped potential that can provide new findings and 
inform the design of user-centered visualization systems. This chapter focuses on 
the conscientiousness personality trait, which measures a person’s preference for 
an organized approach to life over a spontaneous one. In particular, we believe 
that conscientiousness may regulate how one prefers graphical encodings and 
organization. We leverage design guidelines based on user preferences and con-
scientiousness levels to prototype different information visualization systems. We 
conducted a user testing phase to understand how these prototypes affect user task 
efficiency, task efficacy, perceived ease of use, perceived usefulness, and preference. 
Our findings show that conscientiousness levels lead to distinct user preferences, 
suggesting an interaction effect between conscientiousness and design guidelines in 
task efficiency. Additionally, individuals with low conscientiousness scores appear 
to be faster at completing tasks independently of the design guidelines. Moreover, 
individuals with high and low conscientiousness scores prefer a visualization 
specifically designed based on their preferences. Finally, the design guidelines lead 
to different perceived ease-of-use scores. Our study sheds new light on the relevance 
of personality as an adaptation technique in the design pipeline of visualization 
systems. 
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13.1 Introduction 

Recent research in the field of information visualization has leveraged individual 
differences as an adaptation metric to tackle the limitations of one-size-fits-all 
approaches [15, 36, 49]. Among the several psychological constructs that differ-
entiate individuals, personality traits and cognitive abilities have shown promising 
results [41]. Nevertheless, there is a disparity in the number of studies that focus 
on each of these traits. For instance, we found that the state-of-the-art studies more 
consistently the Locus of Control (LoC) than the Five-Factor Model (FFM) traits of 
agreeableness and conscientiousness [41]. Alves et al. [4] conducted a preliminary 
study to bridge this gap. The authors suggest that personality is a differentiating 
factor regarding designing information visualization systems and, in particular, 
results showed promise on the influence of conscientiousness on user preferences 
for information visualization techniques. In particular, Alves et al. [4] used two  
approaches to identify personality-based preferences: one based on correlations and 
the other on clustering. Conscientiousness showed more effects while interacting 
with the other personality variables in the cluster-based approach than by analysis 
with correlations. Further, people with high scores tend to prefer line charts with 
points compared to the remaining population, while individuals in the extremes of 
the distribution prefer a sunburst in comparison to a tree map. In light of these 
findings, the present study continues this line of research by studying whether 
design preferences tailored by conscientiousness scores affect the final evaluation 
of information visualization systems regarding user preference and performance. 

Regarding user preferences, researchers usually developed their experimental 
apparatus based on what they expect to be relevant for a particular subject rather 
than focusing on any input from the participants. Consequently, those apparatus 
may contain biased artifacts from the perceptions designers have regarding user 
preferences from different personality profiles. Additionally, we found no case in 
which researchers leverage user preferences as a basis for information systems 
development and, in particular, how those preferences and personality factors 
modulate user performance and experience dimensions. This follow-up study 
continues to investigate conscientiousness since this trait measures the preference 
for an organized approach to life as opposed to a spontaneous one [28]. Weighing 
this predisposition, we believe that conscientiousness can, for instance, bias the 
user preference for graphical layouts, even when the hierarchical and quantitative 
structures are the same. 

Based on these findings, we conducted an in-depth follow-up user study to under-
stand whether designing visualizations according to the preferences of individuals 
with different conscientiousness personality profiles is relevant to information 
visualization. In particular, we collected design preferences for information visu-
alization techniques and found that conscientiousness affects user preferences. We 
continued by creating conscientiousness-based design guidelines and developing 
dashboard prototypes. To validate these guidelines, participants interacted with the 
different prototypes to understand whether conscientiousness-based design guide-
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lines affect user task efficiency, task efficacy, and perceived ease of use, usefulness, 
and preference. Results suggest an interaction between conscientiousness and the 
prototypes’ design in task efficiency. Additionally, individuals with low conscien-
tiousness are usually faster, independently of the design guidelines. Both individuals 
with lower and higher conscientiousness scores prefer a visualization created based 
on their preferences. Finally, the design guidelines lead to different perceived ease-
of-use scores. These findings provide implications for user modeling and adaptive 
information visualization systems specifically tailored to user preferences. For 
instance, researchers should not only consider conscientiousness when they define 
a personality profile to tailor visualizations to user preferences. 

This chapter is as follows: In Sect. 13.2, we present the fundamentals of per-
sonality psychology before we tackle a selection of studies that have addressed the 
influence of different personality variables on information visualization (Sect. 13.3). 
Section 13.5 follows with a description of how we collected personality and 
preference data and the creation of the design guidelines. Next, Sect. 13.6 covers the 
validation of these guidelines, including a discussion on the results and limitations 
of our study. Finally, we conclude our work with a presentation on future directions. 

13.2 Fundamentals of Personality Psychology 

Personality psychology is a branch of psychology that examines personality and 
its variation among individuals [46]. Two of the classic definitions of personality 
belong to Allport [3] and Child [13]. Allport [3] considers personality as a unique 
psychological system inside individuals. A few years later, Child [13] deems 
personality as an internal factor that gives consistency over time to the individual’s 
behavior. However, both authors agree that personality is an integrated part of 
individuals. Recent research in visualization has consistently found that individual 
differences such as personality can predict goal-setting behaviors as well as how 
individuals interpret and use information through visualization [41, 50, 68, 70]. This 
richness prompted us to leverage personality constructs to study their relevance in 
information visualization design. In particular, we expect to enhance the user profile 
with personality data and understand how to improve the design of visualizations 
tailored to specific personality profiles. However, we need a model to define 
different personality types according to specific metrics to classify and compare 
people based on their personalities without difficulty. 

There is a broad range of theories and models, each with differing perspectives 
on particular topics when defining personality constructs [16]. Among them, several 
models have been developed based on different personality theories such as the 
FFM [17, 44], the HEXACO [37], the Eysenck’s Model [10, 21], the Learning 
Style Inventory (LSI) [32, 33], the Myers-Briggs Type Indicator (MBTI) [47, 48],
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and the LoC [54, 55]. The basis of these models is personality traits1 to describe 
individuals’ behaviors and characteristics. In particular, McAdams [43] views traits 
as underlying biologically determined dispositions. Genetic disparities powerfully 
drive individual differences, and maturational trends follow a biologically mediated 
program. 

Among the first trait-based personality models, Eysenck [21] created the PEN 
model, where we measure personality through three dimensions: psychoticism, 
extraversion, and neuroticism. By the 1980s, however, many researchers began to 
agree that five broad, roughly independent dimensions best-summarized personality 
variation. These five dimensions led to the creation of the FFM [44]. This model 
is a hierarchical organization of personality traits in five dimensions: neuroticism, 
extraversion, openness to experience, agreeableness, and conscientiousness. Each of 
the dimensions divides into six subdimensions called facets. It is usually referred to 
as the OCEANmodel—the acronym of the five presented dimensions—or simply by 
Big Five. The HEXACO model [37] shares four traits with the FFM and introduced 
two new personality traits. In particular, it is composed of honesty–humility (H), 
emotionality (E), extraversion (X), agreeableness (A), conscientiousness (C), and 
openness to experience (O). 

Although all of the mentioned models consider a trait a continuous scale, some 
models address personality traits as a dichotomy. The LSI has a set of four person-
ality profiles for practical learning styles—conversing, accommodating, diverging, 
and assimilating—based on four dichotomies—abstract/concrete, conceptualiza-
tion/experience, active/reflective, and experimentation/observation. Based on the 
Jungian theory [31], the MBTI uses a similar approach by assessing personal-
ity through four dichotomies: extraversion/introversion, sensing/intuition, think-
ing/feeling, and judging/perceiving. In contrast, it provides 16 different personality 
profiles, depicting a higher range than the LSI. Finally, the LoC proposed at first 
by Rotter [55] treated this personality factor as a dichotomy between internal and 
external. Nevertheless, soon after Rotter published his paper on the LoC construct, 
the author decided to reiterate his work and address several problems, limitations, 
and misuses concerning his original conceptualization [56]. In the light of this, 
further work by Levenson [39] started to address the LoC with three independent 
scales: internal, powerful others, and chance. This new approach to LoC allows 
researchers to process this trait similar to the trait continuum scales of the other 
models such as the FFM. 

Among these personality models, the FFM stands out since research shows it 
subsumes most known personality traits, and researchers claim that this model 
represents the “basic structure” underlying the variation in human behavior and 
preferences [34]. In addition, the FFM is the most widespread and generally 
accepted model of personality [25, 57], since it provides a classification and a

1 Allport [2] first defined personality traits as generalized and personalized determining tendencies, 
consistent and stable modes of an individual’s adjustment to his environment. Furthermore, the 
author built a vast lexical collection of adjectives that could describe these traits. 
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conceptual framework that unifies much of the research findings in the psychology 
of individual differences. Nevertheless, given the complexity of personality as a 
psychological construct with the different dimensions interacting with one another, 
we decided to focus on a single trait to provide a broader scope of the impact of 
personality in human–computer interaction. Specifically, we address the personality 
dimension of conscientiousness, a core component of well-studied personality 
models such as the FFM and the HEXACO. This trait suggests self-use of socially 
prescribed restraints that facilitate goal completion, following norms and rules and 
prioritizing tasks [28]. In particular, it measures the preference for an organized 
approach to life than a spontaneous one. This dimension is considered to be the least 
emotionally charged and correlates with positive and negative emotions [27, 60]. 
On the one hand, people with high values of this trait are more likely to be 
well organized, reliable, and consistent. They plan, seek achievements, and pursue 
long-term goals. They also live less emotional lives overall, are more balanced, 
more predictable, and will encounter fewer emotionally intense situations (fewer 
extreme lows and fewer extreme highs). On the other hand, individuals with low 
conscientiousness are generally more easy going, spontaneous, and creative. They 
tend to be more tolerant and less bound by rules and plans [51]. 

13.3 Related Work 

As we mentioned, recent research leverages how personality predicts goal-setting 
behaviors [11] and how individuals interpret information [7] to inform visualization 
design. Two of the most studied personality traits are the LoC [38] and the 
FFM [17, 25, 57]. The LoC is the most studied personality trait [41]. This trait shows 
relevant results between people with internal (Internals) or external (Externals) 
LoC in search performance across hierarchical [26], time series [59], and item 
comparison [12] visualization designs, visualization use [68, 70], and behavioral 
patterns [50]. In particular, while Externals are faster and more accurate than 
Internals regarding inferential tasks such as comparing two items [68, 70], Internals 
are significantly faster than Externals when performing procedural tasks (search 
tasks to locate items) [26]. Additionally, Internals are usually faster than Externals 
in image-based search tasks [8]. Regarding behavioral patterns, Ottley et al. [50] 
found that Externals adopt a strategy similar to depth-first search in indented 
trees. In contrast, Internals’ strategies looked like a breadth-first search. When the 
visualization was a dendrogram, Externals did not follow a specific strategy, while 
Internals were consistent with a mix of breath- and depth-first. Brown et al. [8] 
found similar results, thus reinforcing how LoC acts as a mediator of search patterns 
in visual search tasks. 

Although not to the same extent, there is also a body of research for the FFM 
traits. More specifically, neuroticism, extraversion, and openness to experience 
show measurable effects in the visualization field. Ziemkiewicz and Kozara [69] 
found that individuals with high openness to experience scores are faster while



298 T. Alves et al.

solving problems related to hierarchical visualizations that include conflicting visual 
and verbal metaphors. Furthermore, Ziemkiewicz et al. [70] concluded that, while 
neurotic individuals attained high accuracy on hierarchical search tasks, introverted 
participants were more accurate in answering the questions. Oscar et al. [49] also  
explored neuroticism and extraversion. The authors manipulated the visualization’s 
information granularity to approximate the moment an adaptive system presents 
a visualization to the user. Both traits showed direct effects on task accuracy and 
completion time. In particular, people with high neuroticism were less likely to 
be deceived by spurious correlations. Moreover, extroverted participants were less 
likely to indicate that there was not enough detail available to answer the task. 
Indeed, these individuals were also less likely to complete a low need for detail 
task accurately (e.g., “What was your performance on your exercise goal today?”) 
regardless of whether it was a find or compare values task. 

Regarding conscientiousness, to the best of our knowledge, only three works 
have evaluated the relationship between this trait and information visualization. 
Both Ziemkiewicz and Kosara [69] and Brown et al. [8] measured the conscien-
tiousness level of the participants. However, neither work reported any measurable 
effect of conscientiousness under the studied conditions. The third study was 
conducted by Alves et al. [4], where the authors focused on user preferences for 
information visualization techniques, similarly to Ziemkiewicz et al. [70] and Lallé 
and Conati [36]. Alves et al. [4] leveraged two distinct approaches to study this 
relationship: (i) correlation-based analysis—correlations between user preference 
and an idiom—and (ii) cluster-based analysis—extract preference patterns from 
each group composed of individuals with common characteristics. Although their 
preliminary results suggested that personality affects user preferences with both 
types of analysis, the authors consider the cluster-based approach more appropriate 
to this problem. In particular, it helps to reduce multiple comparison issues. In this 
approach, clusters were defined based on all variables from the FFM and the LoC. 
In particular, conscientiousness levels were significantly different across clusters, 
and each of those depicted distinct idiom preferences for evolution over time and 
hierarchy contexts. Based on these results, we decided to follow the previous 
work [4] and focus on conscientiousness to study in-depth whether this trait can 
solely model user preferences, task efficiency, efficacy, and perceived ease of use 
and usefulness. 

13.4 Methodology Overview 

In this chapter, we investigate the relevance of using design preferences based on 
personality profiles in the design pipeline of information visualization systems. 
Past studies in visualization leveraged the effect of personality on user prefer-
ences [36, 70]. In contrast, conscientiousness has not been studied yet in this 
context. We decided to address this gap by conducting an in-depth user study on 
the conscientiousness personality trait based on its role in regulating a preference
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for organization [28]. In particular, we believe it is interesting to study whether 
this trait affects user preference for more structural graphic elements and layout 
designs of information visualization techniques. Further, we want to investigate how 
individuals judge their user experience with an information visualization system 
designed according to their personality-based preferences. 

There are several steps to take to answer these research questions. First, we need 
to define which visualization techniques we study. Afterward, we ask users to assess 
their preferences for said techniques and continue with an analysis based on the 
conscientiousness scores for shared preferences sets, e.g., whether conscientious 
individuals share a set of design preferences. At this point, we will know how 
individuals from different conscientiousness scores prefer to see their visualizations. 
Finally, we prototype visualizations according to the conscientiousness-based pref-
erences and ask individuals to interact with them. The following sections cover the 
mentioned study phases in depth. 

13.5 Assessment of Personality and Design Preferences 

As the first step to understanding how conscientiousness affects user preferences 
regarding information visualization techniques, we decided to include familiar 
information visualization contexts, as they allow researchers to understand precon-
ceived structures of information. As such, we address: (i) hierarchy, one of the most 
common in research (e.g., [70]); (ii) evolution over time, giving the importance of 
time series data analysis [59]; and (iii) comparison, as it is more appropriate to 
show differences or similarities between values at a fixed granularity [12]. We then 
chose a set of representative idioms for each context. Additionally, we include a 
simple and familiar scenario with each context to stimulate users to reflect on the 
implications of using each idiom rather than the complexity of the data. We also 
focused on minimizing the number of channels and marks of each graph and keeping 
them consistent across contexts while keeping the same data within a context. 

Regarding hierarchy (Fig. 13.1), items are all related to each other by the 
principle of containment. We opted for a tree map (Fig. 13.1a), a circular packing 
diagram (Fig. 13.1b), a sunburst (Fig. 13.1c), and a Sankey diagram (Fig. 13.1d) 
to display the distribution of food consumed by a household within a month. For 
evolution over time context (Fig. 13.2), we chose line charts with and without 
points (Figs. 13.2a and b) and area charts (Fig. 13.2c). The scenario asked the 
participant to imagine that the data referred to the number of registrants and 
participants in a marathon held annually in the United States. Finally, we decided to 
use radar charts (Fig. 13.3a), word clouds (Fig. 13.3b), horizontal and vertical bar 
charts (Figs. 13.3c and d), and pie charts (Fig. 13.3e) for the comparison context 
(Fig. 13.3). In particular, the scenario represents the levels of the happiness index 
among six different countries (France, Italy, Portugal, Spain, Germany, and the 
United Kingdom).
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Fig. 13.1 Idioms for the hierarchy context. (a) Tree map idiom. (b) Circular packing diagram 
idiom. (c) Sunburst idiom. (d) Sankey diagram idiom 

Besides the idioms, we also want to address the graphical elements and layout 
encompassing the information visualization techniques. We decided to address 
both font style—the font family used in a dashboard—and size. Font style varies 
between Arial, Calibri, Calibri Light, Times New Roman, and Lucinda Handwriting. 
Sarsam and Al-Samarraie [58] also studied the relationship between personality 
and user preferences and found that these fonts produce measurable effects. The 
font size can be either small (12pt), medium (14pt), or large (16pt). Moreover, we 
want to understand whether conscientiousness may lead users to prefer different 
information button styles, i.e., how the dashboard represents the help button. We 
tested the button with only an icon, an icon and text, and only text. Regarding 
layout, we focused on the information density of a dashboard and the menu bar 
position. Information density defines how much information the dashboard should
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Fig. 13.2 Idioms for the evolution over time context. (a) Line chart with points idiom. (b) Line  
chart without points diagram idiom. (c) Area chart idiom 

represent. In this case, we allow a dashboard to have between two, four, or six 
sections (Fig. 13.4). Finally, the menu bar position can be either at the top, the 
bottom, the left, or at the right of the screen. 

13.5.1 Data Collection 

Subjects were recruited through standard convenience sampling procedures such as 
direct contact and word of mouth. Subjects included any Portuguese interested in 
participating if at least 18 years old. Our final data set comprises 64 participants 
(30 males, 34 females) between 18 and 60 years old .(M = 24.27; SD = 7.10). 
In addition, we asked whether they were using glasses or contact lenses and the 
apparatus used while filling in the questionnaire. We then verified through one-way 
ANOVAs that neither of these factors affected how participants responded to each 
item. 

Before the experiment, participants were informed about the experience and 
provided informed consent. We also informed them that they could quit the 
experiment at any time. We then collected the conscientiousness value with the 
Portuguese version of the Revised NEO Personality Inventory (NEO PI-R) [18, 40]. 
This questionnaire allows researchers to assess the FFM five personality traits and 
their 30 facets. We calculate the score for each trait by the sum of the Likert
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Fig. 13.3 Idioms for the comparison context. (a) Radar chart idiom. (b) Word cloud idiom. (c) 
Horizontal bar chart idiom. (d) Vertical bar chart idiom. (e) Pie chart idiom 

Scales based on assertions semantically connected to behaviors, e.g., “I have a 
vivid imagination.” In particular, each Likert Scale has five possible alternatives 
of agreement: strongly agree, agree, undecided, disagree, and strongly disagree. 
Overall, the questionnaire has 240 items, including 30 different subscales (one
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Fig. 13.4 Dashboard examples with different information density. (a) Low information density. 
(b) Medium information density. (c) High information density 

for each facet), with eight items for each subscale. High scores exacerbate the 
characteristics of the trait and vice versa, i.e., higher scores on the conscientiousness 
scale mean that individuals have a stronger disposition to be more organized. 

Afterward, we presented to the participants an online questionnaire2 with two 
parts. The first part addressed the graphical elements and layout features (font 
family, information density, etc.), and the second part contained a visual example of 
each idiom (Figs. 13.1, 13.2, and 13.3) grouped by context. We prompt participants 
to read the description of the feature or the scenario for the respective context and 
then assess their preference for each style by completing a seven-point Likert scale 
ranging from Low Preference (1) to High Preference (7). Each participant saw 
all possible graphical elements, layout features, and chart types simultaneously. 
Moreover, we allowed participants to freely change their scores until they were 
satisfied with all ratings to avoid anchoring bias.

2 https://web.tecnico.ulisboa.pt/~tomas.alves/publications/Alves2022_Conscientiousness-
InfoVis-Preferences.pdf. 

https://web.tecnico.ulisboa.pt/~tomas.alves/publications/Alves2022_Conscientiousness-InfoVis-Preferences.pdf
https://web.tecnico.ulisboa.pt/~tomas.alves/publications/Alves2022_Conscientiousness-InfoVis-Preferences.pdf
https://web.tecnico.ulisboa.pt/~tomas.alves/publications/Alves2022_Conscientiousness-InfoVis-Preferences.pdf
https://web.tecnico.ulisboa.pt/~tomas.alves/publications/Alves2022_Conscientiousness-InfoVis-Preferences.pdf
https://web.tecnico.ulisboa.pt/~tomas.alves/publications/Alves2022_Conscientiousness-InfoVis-Preferences.pdf
https://web.tecnico.ulisboa.pt/~tomas.alves/publications/Alves2022_Conscientiousness-InfoVis-Preferences.pdf
https://web.tecnico.ulisboa.pt/~tomas.alves/publications/Alves2022_Conscientiousness-InfoVis-Preferences.pdf
https://web.tecnico.ulisboa.pt/~tomas.alves/publications/Alves2022_Conscientiousness-InfoVis-Preferences.pdf
https://web.tecnico.ulisboa.pt/~tomas.alves/publications/Alves2022_Conscientiousness-InfoVis-Preferences.pdf
https://web.tecnico.ulisboa.pt/~tomas.alves/publications/Alves2022_Conscientiousness-InfoVis-Preferences.pdf
https://web.tecnico.ulisboa.pt/~tomas.alves/publications/Alves2022_Conscientiousness-InfoVis-Preferences.pdf
https://web.tecnico.ulisboa.pt/~tomas.alves/publications/Alves2022_Conscientiousness-InfoVis-Preferences.pdf
https://web.tecnico.ulisboa.pt/~tomas.alves/publications/Alves2022_Conscientiousness-InfoVis-Preferences.pdf
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13.5.2 Data Analysis 

Based on the work of Alves et al. [4] and Sarsam and Al-Samarraie [58], we 
follow a cluster-based approach to study the relationship between conscientiousness 
and user preferences. In particular, we run a clustering algorithm to group users 
according to their personality characteristics and find whether participants with 
similar personality profiles share preferences for specific information visualization 
techniques. 

13.5.2.1 Clustering Personality Variables 

Our first step is to understand how many distinguishable groups of conscientious-
ness scores exist in the sample. We started by applying hierarchical density-based 
clustering [29, 45] and the elbow criterion [8, 58] to find which was the most 
appropriate number of clusters to work. We obtained a value of three clusters 
using the silhouette and Davies–Bouldin index scores analysis [52], as well as 
Ward’s cluster method [20]. Then, we used the k-means clustering algorithm [66] 
to avoid the noise labels that hierarchical density-based clustering yields. The k-
means clustering algorithm divides n observations into k clusters in which each 
person belongs to the group with the nearest mean. We started by normalizing 
our data and allowing the algorithm to run 100 iterations with different centroid 
seeds using Euclidean distance. The final result contained the best output of 100 
consecutive runs in terms of inertia. Finally, we need to validate if the clusters 
have distinct groups of conscientiousness scores. Therefore, we also conducted 
an ANOVA to validate whether each cluster contained people with statistically 
significant differences in conscientiousness levels and its facets. We found a 
significant difference (p < 0.05) in between the three clusters regarding each 
of the personality variables, which shows that all groups have participants who 
differ among themselves in conscientiousness scores. Additionally, we found that 
the clusters were significantly different from each other FFM trait (see Fig. 13.5). 

Table 13.1 depicts the means and standard deviation values for all personality 
traits of the FFM and facets of conscientiousness. We can see that the first group 
(N = 19) has participants with the highest levels of conscientiousness across 
groups. It means that Cluster 1, which we will refer to henceforth as C-High, 
includes people who are predictably the most competent, goal- and detail-oriented, 
and organized. Moreover, these individuals score the highest mean values for the 
other traits except neuroticism, the lowest mean value. Regarding the second cluster 
(N = 27), it depicts people with medium values of conscientiousness, being 
the C-Medium cluster. These people are also the most disagreeable and less open 
to experiences, as we can observe from the low agreeableness and openness to 
experience scores. Finally, the third cluster (N = 18) includes participants with 
the lowest levels of conscientiousness. We also renamed Cluster 3 to C-Low, as
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Fig. 13.5 Boxplots of the distribution of traits and conscientiousness’ facets between clusters and 
the sample. (a) FFM personality traits. (b) Facets of conscientiousness 

Table 13.1 Results of the K-means clustering algorithm for each personality trait and conscien-
tiousness’ subdimensions 

C-High C-Medium C-Low 

Personality variable M SD M SD M SD 

Neuroticisma 80.79 21.87 90.81 16.68 125.90 16.03 

Extraversiona 125.74 13.87 101.74 15.43 99.94 21.00 

Openness to experiencea 139.47 14.10 110.52 16.18 128.00 16.37 

Agreeablenessa 134.32 14.33 118.81 16.60 126.39 16.13 

Conscientiousnessa 142.63 18.74 126.00 21.13 98.89 19.20 

Competencea 24.00 3.37 22.00 3.90 18.50 3.09 

Ordera 22.00 4.98 20.00 5.04 14.50 5.80 

Dutifulnessa 28.00 3.09 25.00 3.92 22.50 2.82 

Achievement strivinga 26.00 4.17 20.00 5.47 16.50 5.54 

Self-disciplinea 22.00 5.62 19.00 4.97 14.00 4.64 

Deliberationa 23.00 3.86 22.00 4.99 15.00 5.48 
a This variable is significantly different across clusters at a significance level of 0.05
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it includes more impulsive individuals who abide less by the rules and are less 
perfectionistic. In addition, these individuals are the most introverted and neurotic. 

13.5.2.2 Extracting Association Rules 

To extract information visualization preferences for the different features and 
contexts among individuals of those three clusters, we opted for the Apriori 
algorithm [30], an association rules method to find common patterns. In particular, 
the Apriori algorithm uses prior knowledge of frequent itemset properties in a data 
set to create Boolean association rules. Data preprocessing included the creation of 
an array for each participant containing the styles or idioms that they preferred the 
most for each feature or context, respectively. In case of a tie between two or more 
items in their preference ratings, we included all items tied together. Afterward, we 
divided users by their cluster labels and used the Apriori algorithm in each group. 
We performed each run with lower bound minimal values of 0.1 for support, 1 for 
confidence, and 3 for lift. We chose the inputs for us to obtain a good balance 
between generating a reasonable number of rules that would cover most of our 
design styles and a robust confidence value. The algorithm yielded 24 distinct 
rules for C-High, 46 for C-Medium, and 13 for C-Low. An Apriori association 
rule is represented often as .itemA → itemB, which translates into itemB being 
frequently present in a set of preferences that also contains itemA. 

13.5.2.3 Finding Preferences for Clusters 

We continued our analysis by choosing which rules to use based on their frequency. 
We started by choosing the rule with the highest frequency value and then continued 
by picking rules with a lower frequency that share a design style and do not 
conflict with a design style previously selected for a feature. In addition, we focused 
on maximizing the number of design elements that we could derive from the 
association rules. When a feature did not have a style associated with it at the end 
of our analysis, we chose the most frequent preferred style for that feature among 
group participants. Table 13.2 illustrates the final rule sets for each cluster. Based 
on the final set of rules for each group, we were able to derive which values to apply 
to the different features and contexts (Table 13.3). Notably, all features and contexts 
have different styles across the three clusters. Additionally, the C-Medium and C-
Low preferences are very similar, differing only on the menu bar positioning and 
the hierarchical context. Nevertheless, we were not able to derive styles for specific 
features. 

As we mentioned, we address this issue by choosing the most frequent style 
among cluster participants. Based on the frequencies, we found people in the 
high cluster commonly preferred the “vertical bar chart” for the comparison 
context. Additionally, those with low conscientiousness scores commonly chose 
a “large” font size and put the menu bar on the “top” of the screen. With
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Table 13.2 Association rules chosen for each cluster. Each rule is represented by itemA → 
itemB, which translates into itemB being frequently present in a set of preferences that also 
contains itemA. Frequency is the number of times the rule was present in the output of the Apriori 
algorithm. Support refers to items’ frequency of occurrence in the data. Confidence indicates the 
number of times the if-then statements are found true. Lift shows how many times the if-then 
statement is expected to be found to be true. For instance, the rule highDensity → calibriLight 
means that participants who prefer high information density also prefer the Calibri Light font and 
that this pair appears 12% of the time 

Rules for the C-High Frequency Support Confidence Lift 

highDensity → calibriLight 8 0.120 1.00 4.67 

highDensity → iconText 3 0.115 1.00 5.57 

calibriLight → iconText 2 0.115 1.00 6.19 

highDensity → sankeyDiagram 2 0.115 1.00 4.77 

mediumFont → highDensity 2 0.115 1.00 4.46 

barDown → mediumFont 1 0.115 1.00 8.67 

calibriLight → sankeyDiagram 1 0.115 1.00 3.71 

highDensity → barDown 1 0.115 1.00 4.33 

highDensity → mediumFont 1 0.115 1.00 4.33 

iconText → barDown 1 0.115 1.00 3.71 

linechartPoints → highDensity 1 0.115 1.00 3.71 

sankeyDiagram → mediumFont 1 0.115 1.00 5.20 

Rules for the C-Medium Frequency Support Confidence Lift 

mediumDensity → largeFont 66 0.200 1.00 5.00 

timesNewRoman → mediumDensity 52 0.200 1.00 5.00 

linechart → mediumDensity 38 0.200 1.00 5.00 

barChartHorizontal → linechart 37 0.200 1.00 5.00 

linechart → largeFont 23 0.200 1.00 5.00 

barChartHorizontal → mediumDensity 21 0.200 1.00 5.00 

linechart → barChartHorizontal 9 0.200 1.00 5.00 

timesNewRoman → barLeft 7 0.200 1.00 5.00 

linechart → iconOnly 4 0.200 1.00 5.00 

mediumDensity → iconOnly 4 0.200 1.00 5.00 

timesNewRoman → iconOnly 4 0.200 1.00 5.00 

highDensity → barLeft 3 0.200 1.00 5.00 

linechart → tree map 3 0.200 1.00 5.00 

Rules for the C-Low Frequency Support Confidence Lift 

barChartHorizontal → linechart 90 0.114 1.00 6.21 

timesNewRoman → sankeyDiagram 25 0.107 1.00 5.77 

linechart → barChartHorizontal 18 0.113 1.00 5.98 

barChartHorizontal → mediumDensity 12 0.107 1.00 5.60 

linechart → mediumDensity 10 0.107 1.00 6.16 

barChartHorizontal → timesNewRoman 8 0.107 1.00 5.95 

linechart → iconOnly 1 0.107 1.00 5.60
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Table 13.3 Features and styles for each cluster. The percentage represents the amount of times 
the design style was chosen compared to the other styles for a feature in each cluster. Bold styles 
were derived from the association rules 

Feature C-High C-Medium C-Low 

Font family Calibri Light (23.68%) Times New Roman 
(9.43%) 

Times New Roman 
(17.14%) 

Font size Medium (36.84%) Large (66.67%) Large (77.78%) 

Info density High (10.52%) Medium (51.85%) Medium (44.44%) 

Menu bar Bottom (10.53%) Left (3.7%) Top (77.78%) 

Buttons Icon and Text (31.58%) Icon Only (70.37%) Icon Only (66.67%) 

Hierarchy Sankey (26.09%) Tree map (11.11%) Sankey (27.27%) 

Evolution Line chart w/ points 
(72.73%) 

Line chart w/out points 
(33.33%) 

Line chart w/out 
points (40.00%) 

Comparison Vertical bar chart 
(37.93%) 

Horizontal bar chart 
(39.58%) 

Horizontal bar chart 
(33.33%) 

the conscientiousness-based preferences defined for each group, we can create 
information visualization design guidelines for the different features and contexts. 
In particular, we were able to derive the following guidelines: 

• People high on conscientiousness prefer visualizations with medium Calibri 
Light font, high information density, the menu bar at the bottom of the screen, 
and buttons with icons and text. Their preferred idiom to represent hierarchical 
information is a Sankey diagram, for evolution over time is a line chart with 
points and for comparisons a vertical bar chart. 

• People with medium conscientiousness levels prefer visualizations with large 
Times New Roman font, medium information density, the menu bar at the left of 
the screen, and buttons with icons. Their preferred idiom to represent hierarchical 
information is a tree map, for evolution over time is a line chart without points 
and for comparisons is a horizontal bar chart. 

• People with low conscientiousness prefer visualizations with large Times New 
Roman font, medium information density, the menu bar at the top of the 
screen, and buttons with icons. Their preferred idiom to represent hierarchical 
information is a Sankey diagram, for evolution over time is a line chart without 
points and for comparisons is a horizontal bar chart. 

To critically analyze how impactful the clustering algorithm was, we have 
to analyze how these preferences were rated independently of the cluster. User 
preferences for the hierarchy context (Fig. 13.6) show an evenly distributed rating 
across idioms. Interestingly, while the tree map idiom has the poorest ratings (M = 
3.66; SD = 0.236), it was the most preferred for C-Medium. For the remaining 
clusters, the Sankey idiom was the most preferred one, which means that those 
personality profiles consistently rated this idiom higher (M = 4.67; SD = 0.251), 
compared to the sunburst diagram (M = 5.34; SD = 0.183) and the circular 
packing idiom (M = 4.14; SD = 0.228).
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Fig. 13.6 Stacked frequency bar chart for user preferences in the hierarchy context 

Fig. 13.7 Stacked frequency bar chart for user preferences in the evolution over time context 

In order to critically analyze how impactful the clustering algorithm was, we 
have to analyze how these preferences were rated independently of the cluster. User 
preferences for the hierarchy context (Fig. 13.6) show an evenly distributed rating 
across idioms. Interestingly, while the tree map idiom has the poorest ratings (M = 
3.66; SD = 0.236), it was the most preferred for C-Medium. For the remaining 
clusters, the Sankey idiom was the most preferred one, which means that those 
personality profiles consistently rated this idiom higher (M = 4.67; SD = 0.251), 
compared to the sunburst diagram (M = 5.34; SD = 0.183) and the circular 
packing idiom (M = 4.14; SD = 0.228). 

We can also observe that, for the evolution over time context (Fig. 13.7), 
participants poorly rated the area chart (M = 3.23; SD = 0.206) in terms of 
preference compared to line chart types with (M = 5.84; SD = 0.158) or without 
points (M = 5.16; SD = 0.183). The area chart did not appear in the strongest 
association rules as expected, leaving the differences between clusters for line 
charts. We found that despite line charts with points being highly rated compared 
to this idiom without points, both the C-Medium and C-Low clusters preferred the 
latter.
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Fig. 13.8 Stacked frequency bar chart for user preferences in the comparison context 

Finally, bar charts dominated the comparison context preferences. In fact, 
looking into how participants rated their preferences (Fig. 13.8), both horizontal 
(M = 5.61; SD = 0.162) and vertical (M = 5.61; SD = 0.166) bar charts 
covered the best ratings. These preferences are reflected in Table 13.3 with the C-
High cluster preferring the vertical version and the other two groups the horizontal 
one. Regarding the other idioms, both radar (M = 4.48; SD = 0.225) and pie 
(M = 4.05; SD = 0.231) charts had an average rating higher than four, while 
the word cloud (M = 3.19; SD = 0.204) had the poorest rates. Only the word 
cloud, the tree map, and the area chart idioms showed an average rating below 
the mark of four, showing how poorly preferred these idioms are in the respective 
contexts. Nevertheless, individuals from C-Medium prefer tree maps compared to 
the counterparts we studied. 

In this light, our results suggest that conscientiousness is a differentiating factor 
when designing information visualization systems. For instance, we can observe that 
conscientious individuals prefer line charts with points. In contrast, the remaining 
individuals do not prefer the chart version with exact points. We believe that this 
type of effect can provide an understanding of a potentially causal relationship 
between conscientiousness and user preferences. We believe that the preference 
for having points and, consequently, the exact position of data stem from the 
fact that individuals with high conscientiousness are more prone to be organized 
and thorough. Another example is the information density on the screen. Highly 
conscientious individuals also showed distinct preferences from the remaining 
groups. In particular, these individuals tend to prefer a screen with high information 
density that may derive from their tendency to follow strict goal-oriented strategies 
and, consequently, favor having the highest amount of information available. 

With the design guidelines created, our next step is to conduct a user study to 
validate them. As we mentioned, our research question is to study whether these 
design guidelines created from user preferences based on conscientiousness affect 
user performance and self-assessment metrics such as perceived usefulness, ease of
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use, and preference. Therefore, the following sections describe our methodology to 
investigate this research question, ending with a discussion of our findings. 

13.6 Evaluation 

In this section, we describe our study to understand whether preferences solely 
based on the conscientiousness trait are indeed relevant to the field of informa-
tion visualization. In particular, our research question addresses how individuals 
judge their user experience with an information visualization system designed 
according to their personality-based preferences. We used a mixed design where 
each participant belongs to one of three possible clusters and they tested all 
dashboards: 3 clusters . × 3 dashboards. 

13.6.1 Visualizations 

We developed an information visualization dashboard based on the design guide-
lines for each group. We named each dashboard based on the group to which they 
were developed, e.g., we designed V-High for the C-High group. The dashboards 
(see Fig. 13.9) contain information regarding terrorist attacks in Europe from a 
public data set. As a means to present a variety of information densities on the 
dashboards similar to the one that participants assessed (Fig. 13.4), we decided to 
add one or more idioms to each dashboard so that they had at least a medium density. 
In this case, the added idiom was a choropleth map, where luminance encodes the 
number of terrorist attacks per country. In particular, we added a fifth idiom to the 
V-High dashboard, as this group of people prefers a higher density than the others. 
This idiom was a bubble chart showing the number of injured and casualties in 
terrorist attacks over time. We specifically chose these charts since they do not cover 
any of the target contexts. Moreover, we believe that adding another instance of a 
chart from the contexts could interfere with the context representation. To have each 
context only contribute to the dashboard with a single chart, we opted for two charts 
that are ignored in the tasks that users need to complete and, consequently, minimize 
their interference with the experience. 

13.6.2 Tasks 

To prompt user interaction, participants were asked a set of nine questions, three 
per dashboard. These questions were divided into two types of information-seeking 
behaviors [1]—factual and interpretive—which led the participant to search for 
information in the content of the interface and reflect on what they learned. We
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Fig. 13.9 Visualizations created based on the conscientiousness-based design guidelines. (a) V-
High, the dashboard for the C-High cluster. (b) V-Medium, the dashboard for the C-Medium 
cluster. (c) V-Low, the dashboard for the C-Low cluster
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opted to not consider exploratory tasks and focus on questions that had a single 
correct measure to be able to track when the task ended. In factual questions, the 
user seeks a specific piece of data. They were the following: 

F1 What are the three main targets for terrorist attacks in Germany? 
F2 What are the main targets for terrorist attacks in Ireland? 
F3 What are the main targets for terrorist attacks in the Netherlands? 
F4 What is the number of assassinations that happened in Greece between 1990 

and 2018? 
F5 What is the most common terrorist attack type that happened in France between 

1990 and 2004? 
F6 What is the number of terrorist attacks against infrastructures that happened in 

Sweden from 1990 and 2004? 

Regarding the interpretive tasks, this type of information-seeking task requires 
users to actively create possible scenarios to interpret information about its amount 
or quality [35]. In our study, we created the following interpretive questions: 

I1 You are planning your next trip to Europe, and you want to know how has been 
the evolution of terrorism cases in Italy. Do you consider that terrorism has been 
increasing or decreasing? In what year has there been more attacks and what 
was the number of attacks in that year? 

I2 You are about to go on a business trip to the United Kingdom. Considering the 
evolution of terrorist attacks in this country, do you believe it to be safe? In what 
year has there been more attacks and what was the number of attacks in that 
year? 

I3 You are writing an article on the evolution of terrorism in Spain. Considering the 
evolution of the attacks, do you consider them to be increasing or decreasing? 
In what year was registered the highest number of attacks and what was the 
number of attacks in that year? 

While the first three factual questions (F1 to F3) address the hierarchy context 
idiom, the remaining three (F4 to F6) focus on the comparison idiom. The 
interpretive questions (I1 to I3) focus on the evolution over time context idioms. 

13.6.3 Measures 

User Performance We measure the accuracy and response time for each task. 
Accuracy refers to whether the participant answered correctly or incorrectly to the 
task, and we evaluate the response time in seconds. 

User Assessment Perceived usefulness and ease of use were assessed with the 
Technology Acceptance Model 3 (TAM3) [63]. We found no validated Portuguese 
translation, since most studies (e.g., [23, 61, 64]) solely translate the original 
scale [63] and adapt to their context by replacing “the system” with their specific
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product. Finally, we collected user preference for each dashboard with a seven-point 
Likert scale ranging from low preference (1) to high preference (7). 

Personality Similar to the previous study, we collected the conscientiousness 
scores with the Portuguese version of the NEO PI-R [18, 40]. 

Demographics We recorded for each participant their gender, age, self-reported 
visual acuity, and whether they were color-blind. Moreover, we collected visualiza-
tion literacy by showing each participant an instance of each chart with an exemplary 
domain. These examples contained a different domain from the one we used for 
the experiment to reduce learning bias. Then, we asked participants to assess their 
familiarity with that visual representation on a five-point Likert scale ranging from 
not familiar (1) to very familiar (7). 

13.6.4 Expected Findings 

User Performance Regarding user efficiency, previous studies [8, 26] showed that 
the personality trait LoC affected the time users took to complete a search task. 
We believe that conscientiousness may also affect the time users take to perform 
tasks since it prompts one to follow norms and rules while prioritizing tasks [28]. In 
particular, we want to study whether users complete tasks faster while using an 
information visualization system according to their design preferences based on 
conscientiousness: 

H1 Users complete tasks faster when they interact with a visualization designed 
according to their preferences by conscientiousness level. 

Another interesting metric to leverage in user efficiency is the number of errors. 
Research has shown that users make fewer mistakes while interacting with an 
interface designed based on their preferences [8, 9, 26]. Moreover, Ziemkiewicz et 
al. [70] showed that neuroticism and extraversion affect user efficacy. In this light, 
we believe that conscientiousness may show a similar effect based on its impact on 
how one approaches life in an orderly way [28]. Thus, having users interact with an 
information visualization designed based on their preferences by conscientiousness 
level may affect their mistakes: 

H2 Users make fewer mistakes when they interact with a visualization designed 
according to their preferences by conscientiousness level. 

User Assessment We want to study how conscientiousness models the perception 
of user experience dimensions. Based on previous research [36], we believe that 
conscientiousness may regulate perceived usefulness and ease of use. In particular, 
we expect users will rate an information visualization system higher in both
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perceived usefulness and ease of use when designed based on their conscientious-
ness level: 

H3 Users rate a visualization designed according to their preferences by conscien-
tiousness level higher on scores. 

Finally, user interfaces designed according to personality affect user prefer-
ence [58]. Therefore, we predict that users will prefer a system designed for their 
conscientiousness level: 

H4 Users prefer a dashboard designed according to their preferences by conscien-
tiousness level. 

13.6.5 Procedure 

Again, we recruited subjects through standard convenience sampling procedures 
such as direct contact and word of mouth. Our final data set comprises 45 
participants (25 males, 20 females) between 19 and 60 years old . (M = 24.9; SD =
8.1). 18 testers (40%) did not participate in the first study where we collected design 
preferences. In this case, we invited participants to complete the NEO PI-R [18] 
questionnaire on an online platform. Participants were then informed about the 
experience and provided informed consent. We also informed them that they could 
quit the experiment anytime without prejudice or consequence. 

We conducted the user testing sessions via an online videoconference platform, 
where the researcher recorded a screen-shared browser and gave remote control 
to the user. Participants started by filling in the demographic questionnaire. Next, 
participants were randomly assigned an order through which they would interact 
with the three dashboards (V-High, V-Medium, and V-Low). As we mentioned, each 
dashboard was designed based on the guidelines for the respective conscientiousness 
cluster (see Sect. 13.5.2.3) and contained the same data. While interacting with 
a dashboard, we asked participants two factual questions (one for each context), 
followed by an interpretative question. We also randomized the order of the 
questions across dashboards. Moreover, we asked each question only once in the 
experiment. This approach guarantees that participants interacted with each target 
context idiom on the dashboards and minimize learning bias. After answering the 
questions for a dashboard, we invited participants to fill in the TAM3 to assess 
their perceived usefulness and ease of use and the Likert scale to measure their 
preference. Similar to the previous data collection, participants were allowed to 
freely change their scores until they were satisfied with all ratings to avoid anchoring 
bias.
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13.6.6 Data Analysis 

Regarding the independent variables, the group acts as a between-subject variable 
and has three possible values: C-High, C-Medium, C-Low. The dashboard is a 
within-subject variable and, as we mentioned, we renamed the dashboards designed 
for the C-High, C-Medium, and C-Low clusters as V-High, V-Medium, and V-
Low, respectively. All evaluation sessions were video recorded, which we analyzed 
to collect task performance metrics after the evaluation phase. We measured task 
performance through the sum of the time participants took to complete all tasks and 
the sum of the number of wrong answers to those tasks. For the self-assessment 
scales, we calculated the responses to TAM3 through the sum of the answers 
to the perceived usefulness and ease-of-use items. Finally, we examined the user 
preference scores for each participant. We assigned the preferred dashboard(s) 
according to the highest scores, e.g., if two dashboards have the same score and 
it is the highest score, we count both as preferred. 

After fitting the personality data to the clustering method, we obtained 13, 13, 
and 19 participants for the C-High, C-Medium, and C-Low clusters, respectively. 
However, we were not able to record the task completion time of two participants. 
Therefore, we remove them from the analysis due to constraints in the experiment. 
Both participants belonged to the C-High, which makes the final sample of this 
cluster 17. We ran a two-way mixed ANOVA with cluster (3 levels) and dashboard 
(3 levels) as factors. We tested for sphericity (Mauchly’s test) and used the 
Greenhouse–Geisser correction when the assumption was not met. Finally, we 
examined user preference by counting per participant the dashboard that scored 
higher between the three Likert scales. We ran a chi-square test of independence 
for .r × c contingency tables. 

13.7 Results 

In this section, we present results related to the effect of conscientiousness on task 
performance and self-assessment metrics for each visualization system. Data are 
presented as mean . ± standard deviation unless otherwise stated. 

13.7.1 Performance Metrics 

Task Completion Time We study task performance through two metrics: task 
completion time and the number of errors participants commit while performing 
them. When analyzing task time completion, Mauchly’s test of sphericity indicated 
that the assumption of sphericity was met for the two-way interaction, . χ2(2) =
4.064, p = 0.131. There was no statistically significant interaction between the
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Fig. 13.10 Estimated marginal means graph for the time users took to complete tasks in each 
dashboard 

cluster and the design guidelines on task completion time, . F(4, 80) = 2.234, p =
0.073, partial .η2 = 0.100. Additionally, we found no significant main effects; 
the conscientiousness profile did not show significant differences, . F(2, 40) =
1.287, p = 0.287, partial .η2 = 0.06, as well as the dashboard, . F(2, 84) =
0.280, p = 0.756, partial .η2 = 0.007. Therefore, we cannot accept H1; in  
addition to conscientiousness not affecting task completion time, participants were 
not faster while interacting with a dashboard designed for their conscientiousness-
based preferences. 

By taking a closer look at the distributions, we can observe in Fig. 13.10 
that people from the C-Low cluster were usually faster completing the tasks 
independently of the dashboard .(107.744 ± 21.193 seconds.; SE) compared to the 
C-High .(152.843 ± 18.532; SE) and C-Medium .(135.564 ± 21.193; SE) clusters. 
They were only slower .(109.000± 44.488) than people from the C-Medium cluster 
in their V-Low dashboard .(106.920 ± 88.590). Another interesting result is that 
only people from the C-Medium group took more time (.152.077 ± 68.746) in the  
dashboard designed for them (V-Medium) compared to V-High (.147.692±104.687) 
and V-Low (.106.923±88.590). In contrast, individuals from the C-High group took 
.165.235±113.682 seconds in V-Low compared to the .135.059±86.734 seconds in 
V-Medium and the .158.235±136.776 seconds in V-High. Finally, the C-Low group 
took .109.000±44.488 seconds in V-Low compared to the .92.385±26.554 seconds 
in V-High and the .121.846 ± 44.562 seconds in V-Medium. 

We decided to continue our analysis by tackling task completion time per task. 
As we can observe in Fig. 13.11, it appears that individuals usually take a similar 
amount of time independently of the visualization. However, we can observe that 
three tasks suggest an effect by the dashboard. Regarding the factual tasks, we can 
observe that one dashboard made participants have a higher task completion time. 
Participants were slower completing F1 in the V-Low dashboard (. 55.22 ± 56.25
seconds) compared to V-Medium (.35.31 ± 19.81) and V-High (.29.83 ± 31.31). As 
we mentioned, F1 was associated with the hierarchy context. However, both V-High 
and V-Low had a Sankey diagram in that context. In this case, we do not believe that
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Fig. 13.11 Estimated marginal means graph for the time users took to each task across the 
dashboards 

the dashboard affected task completion time. In F6, individuals were slower in the 
V-Medium (.67.39 ± 52.74), followed by V-High (.47.00 ± 29.98) and then V-Low 
(.46.40 ± 41.48). F6 was a factual task dedicated to the comparison context. Again, 
the slowest task completion time was on a dashboard (V-Medium) that shared the 
idiom with another dashboard (V-Low). Consequently, we believe that the design 
guidelines did not affect the time users took to answer the factual tasks. 

Concerning the interpretive tasks, a similar trend was present in I2 and I3. In I2, 
V-Low led participants to spend more time completing the task (.78.73 ± 82.91), 
while V-Medium (.63.91 ± 21.95) and V-High (.63.10 ± 56.34) showed similar task 
completion times. Finally, I3 appears to be the only task where a specific dashboard 
benefited the participants. In particular, V-High showed lower task completion times 
(.36.83±9.45) compared to V-Medium (.50.21±45.28) and V-Low (.49.87±42.36). 
In the I2 case, we find a similar trend as we described in the factual tasks. However, 
I3 appears to be the only case where a specific plot led participants to be faster 
in completing the task. In particular, the points in the line chart appear to have 
played a role in an effect on the task completion time of I3. Interestingly, I1 
and I2 also leveraged the line chart yet there was no suggestion of the line chart 
with points playing a major role. We assume that this artifact can be neglected 
and, consequently, the dashboard did not affect the time users took to answer the 
questions. 

Task Accuracy Regarding the number of errors that participants made, Mauchly’s 
test of sphericity indicated that the assumption of sphericity was met for the two-way 
interaction, χ2(2) = 2.877, p  = 0.237. Similar to the previous analysis, we found 
no statistically significant interaction between the cluster and the design guidelines 
on the number of errors users committed while performing the tasks, F(4, 80) = 
0.620, p  = 0.649, partial η2 = 0.030. Moreover, the cluster variable did not show 
significant differences, F(2, 40) = 0.316, p  = 0.731, partial η2 = 0.016, as well 
as the dashboard, F(2, 80) = 0.057, p  = 0.945, partial η2 = 0.001. Again, we 
cannot accept H2, since the number of errors was not affected by either independent
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Fig. 13.12 Estimated marginal means graph for the number of errors users committed while 
interacting with each dashboard 

variable. However, we can observe (Fig. 13.12) that individuals from each cluster 
made less mistakes using the dashboard designed for them. In particular, the C-
Low made fewer mistakes when they performed the tasks using their dashboard 
(0.385 ± 0.650) than with V-High (0.462 ± 0.877) or V-Medium (0.538 ± 0.660). 
Following the same trend, individuals from C-Medium also made fewer mistakes in 
V-Medium (0.385 ± 0.650), followed by V-Low (0.462 ± 0.660), and then V-High 
(0.615 ± 0.768). Finally, C-High participants made fewer errors in the dashboard 
that was designed based on their preferences (0.471 ± 0.717) than in V-Medium 
(0.706 ± 0.772) or V-Low (0.647 ± 0.862). 

13.7.2 Self-assessment Metrics 

We measured perceived usefulness, ease of use, and user preference as self-
assessment metrics. 

Usefulness For the perceived usefulness, Mauchly’s test of sphericity indicated 
that the assumption of sphericity was met for the two-way interaction, . χ2(2) =
1.516, p = 0.469. Nevertheless, there was no statistically significant interaction 
between the cluster and the design guidelines on perceived usefulness, . F(4, 80) =
1.001, p = 0.412, partial .η2 = 0.048. Additionally, there were no main effects 
for the independent variables, with the cluster variable not showing significant 
differences, .F(2, 40) = 0.571, p = 0.570, partial .η2 = 0.028, as well as  
the dashboard, .F(2, 80) = 1.975, p = 0.145, partial .η2 = 0.047. A closer 
inspection at Fig. 13.13 shows that C-High individuals provide a higher usefulness 
score to their dashboard (V-High) than to the others (V-High: .24.35 ± 4.429; V-
Medium: .22.00 ± 5.196; V-Low: .23.88 ± 3.160). In contrast, C-Medium attributed 
their lowest usefulness score to V-Medium (.23.46 ± 4.352), followed by V-High 
(.24.85 ± 3.158) and then V-Low (.25.31 ± 3.772). Regarding C-Low, people from
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Fig. 13.13 Estimated marginal means graph for the perceived usefulness of each dashboard 

this group attributed the highest scores to V-Medium and V-Low, followed by V-
High (V-High: .23.54 ± 2.727; V-Medium: .24.23 ± 2.976; V-Low:  .24.23 ± 3.219). 
Moreover, conscientiousness did not seem to have an effect on how participants 
rated usefulness independently of the dashboard (C-Low: .24.000 ± 0.798; C-
Medium: .24.538 ± 0.798; C-High: .23.412 ± 0.698; SE).  

Ease of Use Similarly, Mauchly’s test of sphericity indicated that the assumption 
of sphericity was met for the two-way interaction regarding ease of use, . χ2(2) =
0.892, p = 0.640. Although we found no significant interaction effect between the 
cluster and the design guidelines on perceived ease of use, . F(4, 80) = 0.845, p =
0.501, partial .η2 = 0.041, there was a statistically significant main effect of 
the design guidelines, .F(2, 80) = 4.070, p = 0.021, partial .η2 = 0.092. 
Additionally, results hint toward a main effect of conscientiousness, . F(2, 40) =
2.266, p = 0.117, partial .η2 = 0.102, which may suggest that the way individuals 
perceived ease of use may be regulated by this personality trait. Scores regarding 
perceived ease of use followed the trends of the perceived usefulness (Fig. 13.14); 
nevertheless, in this case, results suggest that conscientiousness had a nonsignificant 

Fig. 13.14 Estimated marginal means graph for the perceived ease of use of each dashboard
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Table 13.4 Count of user 
preferences per dashboards 

C-High C-Medium C-Low 

V-High 10 3 3 

V-Medium 3 4 2 

V-Low 6 7 8 

effect on how participants rated usefulness independently of the dashboard (C-High: 
.22.647 ± 0.722; C-Medium: .24.872 ± 0.825; C-Low:  .22.974 ± 0.825; SE) with 
a medium effect. Another interesting result was the significant effect of the design 
guidelines on the perceived ease of use with a medium-size effect; V-Low shows the 
highest results .(24.421±0.563; SE) compared to V-High .(23.397±0.557; SE) and 
V-Medium .(22.676±0.616; SE). In particular, we can observe that the people from 
the C-High and C-Low attributed similar scores to the V-High (C-High: . 22.882 ±
4.241; C-Medium: .25.308 ± 2.428; C-Low:  .22.000 ± 3.719) and V-Low (C-High: 
.23.647± 3.639; C-Medium: .25.538± 4.075; C-Low: .24.077± 3.226). In contrast, 
the groups differed when they assessed V-Medium (C-High: .21.412 ± 4.459; C-
Medium: .23.769 ± 3.586; C-Low:  .22.846 ± 3.760). However, we cannot accept 
H3. 

User Preference Finally, we investigated whether conscientiousness affected user 
preference. After counting the preference of each user, we obtained the preference 
matrix depicted in Table 13.4. A chi-square test of independence was conducted 
between the dashboard and the cluster. Five expected cell frequencies were lower 
than five. There was no statistically significant association between the dashboard 
and the cluster, .χ2(4) = 5.406, p = 0.248. The association was moderate [14], 
Cramer’s V .= 0.242. Since there was not a statistically significant association 
between the two variables, we cannot reject the null hypothesis and cannot accept 
the alternative hypothesis. We found H4 to be inconclusive since we can observe 
that only the C-High and C-Low clusters preferred the dashboard that was designed 
for those conscientiousness profiles. Therefore, we cannot accept it. 

13.7.3 Discussion 

Our objective was to study whether design guidelines from preferences based on 
the conscientiousness trait are relevant in information visualization. In particular, 
we extend prior work by Alves et al. [4]. Weighting our findings, we are not able 
to reach any strong conclusions that highlight that this personality trait is relevant 
to the design of visualization systems. On the one hand, we found that different 
conscientiousness scores led individuals to have distinct preferences for information 
visualization techniques. Additionally, we found that design guidelines formulated 
based on these preferences lead users to report disparate ease-of-use scores. Based 
on the statistical tests, results suggest a trend toward conscientiousness affecting 
how users assess the perceived ease of use of an apparatus. Additionally, when
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individuals interacted with the dashboard, a nonsignificant trend also shows that 
the design guidelines affected task completion time. Further, participants made 
fewer mistakes using the dashboard designed according to their preferences. Finally, 
people with lower or higher conscientiousness scores preferred the dashboard that 
was designed according to their preferences (V-Low and V-High, respectively). In 
addition, individuals with low scores were usually faster than their counterparts 
in completing the tasks. These findings shed new light on the possibility that 
conscientiousness may have a relevant role in information system adaptability 
based on personality traits. 

On the other hand, we have not accepted our hypotheses, and our findings 
are in line with the few works that exist in the state-of-the-art [8, 69]. Indeed, 
we found no significant interactions between the conscientiousness level of an 
individual and the designed guidelines we followed to prototype the dashboards 
on task performance and self-assessment metrics. Several possible reasons may 
explain our findings. The first and most direct one is that design preferences based 
on conscientiousness levels are not relevant to information visualization systems 
adaptation, as they do not significantly affect user performance or self-assessment 
metrics. Another reason might be that the tasks were not sufficiently demanding to 
trigger a conscientiousness-based response. 

Regarding personality, it may also be the case that personality interactions had 
a more prominent effect than the conscientiousness trait by itself, thus prompting 
actions and self-assessment by the users that cannot be explained under these study 
conditions. Finally, the familiarity with the experimental context may have had an 
effect. Although we did not collect familiarity with the theme of terrorism in Europe 
or information systems, we did ask users to rate their familiarity with each idiom 
to understand whether it would have an impact on their interactions. In this case, 
we measured user familiarity with a seven-point Likert scale. Figure 13.15 shows 
the distribution of familiarity for the relevant idioms that we used in the factual 
and interpretative tasks. The most known idioms are the vertical . (6.91 ± 0.358)

Fig. 13.15 Stacked frequency bar chart depicting the distribution of familiarity for the different 
idioms
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and horizontal .(6.71 ± 0.626) bar charts, followed closely by the line chart 
.(6.69 ± 0.557). It means that all idioms from the comparison and evolution over 
time contexts were well-known to the participants. 

For the hierarchy context, both the Sankey and the tree map showed a positive 
familiarity with ratings of .4.71 ± 1.72 and .4.2 ± 1.85, respectively. Although we 
believe this is the least likely reason to shape our findings, given how familiar users 
were with the idioms, we understood from the recordings that the bubble chart from 
V-High confused some participants, especially those with high conscientiousness. 
We added this element to increase the information density of the dashboard. 
Although it may have led conscientious individuals to spend time analyzing the 
irrelevant bubble chart and, consequently, spending more time performing the tasks, 
V-High made them perform fewer mistakes. By having a better accuracy, we believe 
that it led people with high conscientiousness values to rate V-High with the highest 
perceived usefulness scores. In contrast, the lack of participation of the bubble chart 
in the tasks may have also led these individuals to not rate V-High with the highest 
ease-of-use scores. We were also able to understand from the recordings that users 
commented how the menu bar on the top of the dashboard felt “more familiar” 
than on the bottom or left side. Again, this factor may have affected how users 
rated their perceived ease of use and usefulness and user preference. Finally, we 
also consider that the idiom pool we offered users in the phase of the study was 
sufficiently complete with the most used idioms, thus allowing flexibility to rate 
preferences. 

Interestingly, the results of both studies appear to be in conflict. Our studies have 
shown that, although users with different conscientiousness scores have distinct 
design preferences for visualization features, designing visualization systems based 
on those design preferences does not have a significant effect on user performance 
or experience. However, we believe researchers can leverage our design preference 
findings with other approaches besides the clustering and apriori algorithms. Indeed, 
all previous studies showed that when users needed to assess their preference for 
design elements individually, there are differences in user preferences following 
distinct personality profiles. We hypothesize that the lack of significant effects on 
user experience and performance of the visualization systems designed according to 
the personality-based user preferences may be based on the context and the act of 
interacting with a system rather than ranking design preferences in a form. As such, 
future studies should aim at refining user preferences by including user interaction 
in the collection phase. By exposing participants to interaction, users may winnow 
and adjust their design preferences based on the context and the tasks they have 
to perform. These refined user preferences may then be examined to understand 
whether they are triggered by personality dynamics. In this case, we suggest that 
designers should aim at performing changes that have multiple graphical elements 
varying in style rather than performing small changes to provide more consistency 
to the users according to their personality profile.
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13.7.3.1 Research Implications 

Based on our results and observations, we were able to devise a set of implications 
that can be useful for information visualization designers targeting personality-
based adaptive systems. Designers should take into account that personality—more 
specifically, conscientiousness—does affect user preference regarding information 
visualization techniques. Nevertheless, while we found that conscientiousness mod-
eled information visualization preferences, we were not able to find strong results 
regarding their impact on performance metrics or self-assessment metrics. There-
fore, our findings suggest that design preferences based on conscientiousness scores 
are not a strong metric to leverage in information systems adaptation regarding those 
factors. Instead, designers should take into account how conscientiousness appears 
to task performance, for instance, independently of user preferences. Prior work 
suggests that conscientiousness may affect user performance since it regulates the 
propensity to facilitate goal completion and prioritize tasks [28]. We expected that 
high scores in conscientiousness would make individuals more efficient and accurate 
and vice versa. However, we found contrasting results hinting that individuals with 
lower conscientiousness scores completed the tasks faster, and it did not affect 
the number of errors they committed. As we have seen, individuals with lower 
conscientiousness are usually faster and more correct in completing search tasks 
than their counterparts. 

Another interesting aspect to focus on is the assessment of the visualization 
trustworthiness [67]. Dinesen et al. [19] found that highly conscientious individuals 
tend to be careful and seek to retain control over a situation. We believe that it may 
lead to these individuals trusting less in a visualization. In addition, the assessment 
of information visualization systems may be affected as these individuals are 
more sensitive to no-functionality artifacts, thus prompting that every visualization 
element should have a function and a reason to exist. Finally, we also found that 
users are generally acquainted with most of the idioms that we studied, which 
provides designers with a larger design space to take into account in their systems. 

Regarding our research, the previous studies showed that taking into account 
personality factors in advance of the design of graphical features in visualization 
systems does not affect how individuals perceived those apparatus. Nevertheless, 
personality variables still hinted at their regulatory nature in human–computer 
interaction. In particular, this psychological construct suggested an effect on task 
completion time and on how individuals decided which were their design prefer-
ences. As such, we decided as the next step of our research to study how personality 
affects decision-making in the context of information visualization, focusing on 
their impact on the priming effect by cognitive biases as well as how personality 
affects the way users trust and which insights they can obtain from visualizations.
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13.7.3.2 Limitations and Future Work 

Some important factors may provide additional information regarding the lack 
of significance observed in some of our results. First, we have a modest sample 
size to test the three personality clusters. A larger number of participants would 
allow conclusions with a stronger impact. Future work includes recruiting more 
participants for follow-up studies and analyzing whether a larger sample size affects 
user preference, performance, and self-assessment metrics. We have to highlight 
that a larger sampling could change the final clusters of the personality profiling, 
thus adding a variation that may lead to different preferences from each cluster. 
Nevertheless, our methodology based on state-of-the-art research [4, 58] is sound to 
differentiate people based on personality factors, since each cluster was independent 
of the others for all main personality traits. 

Conscientiousness should also be further explored independently of user prefer-
ences to leverage how this trait leads users to follow rules to achieve their goals. 
There is still room to explore how conscientiousness models user performance 
and preferences for different information visualization techniques. In particular, 
there is still a large set of personality and emotional intelligence traits that remain 
underexplored in the domain of information visualization. Among these examples, 
we find the FFM facets of self-discipline, aesthetics, and deliberation. 

Second, although we chose the most common idioms for the contexts, more 
idioms could be shown to participants who may have revealed other preferences. 
In this line, the scenario and the complexity of the data sets used to illustrate the 
different contexts may have affected how people perceived the idioms. Additionally, 
not asking users to perform any task rather than rating their preference for the 
aesthetics of an idiom may not impact visual task analysis. Therefore, task types and 
contexts should be further explored as they may lead to distinct interactions of users 
given their differences. Finally, our experiment included only dashboards tuned 
to individual conscientiousness levels. The lack of a control dashboard may have 
increased the strength of the overlap degree between the groups and, consequently, 
affect the significance of our results. Future work should also consider adding a 
control condition to understand whether individuals prefer a sample dashboard or 
one that is designed by their preferences. 

Nowadays, Personality Psychology researchers use the traditional method of 
validated psychological questionnaires to assess personality variables. The static 
and long nature of these instruments restricts practical applications since it takes a 
lot of time to answer the questionnaires. In addition, users may not provide truthful 
responses by responding in a way they think is best for a given situation or due 
to privacy issues [24]. These limitations led researchers to explore other ways to 
assess personality traits [42, 53], such as eye tracking [6], social media [5, 22], 
and electroencephalography (EEG) [62, 65]. Although these methods are still 
understudied, they allow a passive collection of personality variables leveraged by 
ubiquitous computing to provide adaptive information visualization systems with 
user context. Moreover, this assessment needs to be only performed once, since 
personality is often stable and these data can be saved to be used afterward.
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To complement, personality-based preferences can also work the other way 
around by allowing designers to extract personality profiles based on user prefer-
ences, thus strengthening current personality assessment techniques. For instance, 
Ottley et al. [50] and Brown et al. [8] showed that mouse data predict personality 
factors. Since conscientiousness drives individuals to follow norms and rules while 
prioritizing tasks [28], we believe that the conscientiousness trait may manifest 
its effect through the interaction data that users show while interacting with a 
dashboard. In particular, we expect that individuals with high conscientiousness 
scores will follow an optimized search strategy more and, consequently, perform 
fewer interaction events such as hovers, and vice versa. Therefore, we expect that the 
system can predict the conscientiousness score based on the number of interactions. 

13.8 Conclusions 

The objective of our study was to assess how conscientiousness models user prefer-
ences regarding information visualization techniques and whether these preferences 
are relevant for information visualization systems design. We presented the creation 
of a set of design guidelines based on the relationship between conscientiousness 
and user preference and then designed a set of dashboards based on those guidelines. 
We continued by reporting a user study where we evaluate whether the dashboards 
lead users with different conscientiousness levels to change their task performance 
as well as their self-assessment of usefulness, ease of use, and preference. Our 
findings show that conscientiousness leads to distinct user preferences while 
suggesting that there is an interaction effect between conscientiousness and design 
guidelines in task efficiency. Additionally, individuals with low conscientiousness 
scores are usually faster independently of the design guidelines. Individuals also 
performed fewer mistakes while interacting with a dashboard designed for their 
conscientiousness levels. Moreover, people with lower or higher levels of this 
trait prefer a visualization designed specifically for them. These participants also 
perceive the dashboard designed for them with higher usefulness. Finally, the design 
guidelines lead to different perceived ease-of-use scores. Nevertheless, we were not 
able to find any significant interaction effects between the conscientiousness level of 
an individual and the design guidelines. In light of this, the present study provides 
important implications that may be used in the design pipeline as guidelines to 
customize information visualization systems. 
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Chapter 14 
Visualizing Uncertainty in Different 
Domains: Commonalities and Potential 
Impacts on Human Decision-Making 

Laura E. Matzen, Alisa Rogers, and Breannan Howell 

Abstract Visualizing uncertainty is a difficult but important task. Many techniques 
for visualizing uncertainty are designed for a specific domain, such as cartography 
or scientific visualization, and the effectiveness of these techniques is tested within 
that domain (when it is tested at all). This makes it difficult to generalize the 
findings to other tasks and domains. Recent work in visualization psychology has 
begun to focus on this problem from the perspective of how different visualization 
techniques impact human cognitive processes, including perception, memory, and 
decision-making. Taking this perspective allows researchers to develop theories that 
can generalize across domains. This is a rich area for research, but given the large 
number of papers about uncertainty visualization, it can be difficult to know where 
to begin. The goal of this chapter is to provide a broad overview of what kinds 
of uncertainty visualization techniques have been developed in different domains, 
which ones have been evaluated with respect to their impact on human cognition, 
and where important gaps remain. 

14.1 Introduction 

Data visualizations are useful tools for helping people to explore, understand, 
and make decisions based on data. To support high-quality decision-making, it 
is often necessary for data visualizations to include some representation of the 
uncertainty in the data or in the analysis pipeline that produced the visualization. 
However, designing effective visualizations that include uncertainty information is 
extremely challenging. While there have been numerous studies that have developed 
and tested different methods for incorporating information about uncertainty into 
visualizations, to date there are few coherent guidelines regarding the best choices 
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for communicating uncertainty without overwhelming the viewer or exacerbating 
cognitive biases. 

Recent work has attempted to address these gaps by linking visualization com-
prehension in general (e.g., [102, 118]) and uncertainty visualizations specifically 
[116, 117] to theoretical frameworks in cognitive science. This work has identified 
perceptual and cognitive factors that lead to pervasive biases in the comprehension 
of visualizations. For example, people tend to treat a region that is surrounded 
by a visual boundary as being categorically different from regions outside of that 
boundary. This can have substantial impacts on their decision-making, even when 
the location of the visual boundary is somewhat arbitrary [117] or an artifact of the 
mapping between uncertainty information and visual attributes [126]. 

The emerging field of visualization psychology has identified a number of com-
mon visualizations that consistently produce biases in interpretation and decision-
making. These biases can stem from intuitions about color maps [138], misun-
derstandings of probability [72], misinterpretation of common visual cues such as 
error bars [101], and interpretations of visual boundaries [117]. Much of the work 
that has identified these common biases has focused on visualizations of statistical 
variability, such as bar graphs, and spatial visualizations, such as hurricane forecasts. 
However, the same types of biases are highly likely to appear in other domains, since 
they are caused by human perceptual and cognitive processes. 

Visualizations of uncertain information are especially prone to errors or biases in 
interpretation (cf. [116]). Humans struggle to deal with uncertainty under the best 
of circumstances, and it can be difficult to characterize the uncertainty in a dataset, 
much less visualize it in a way that viewers will find easy to understand. However, 
people make high-consequence decisions based on uncertain information all the 
time, and visualizations often play a crucial role in the decision-making process. 

To give a concrete example, a real-world need for uncertainty visualizations 
comes from the emergency preparedness domain. To prepare for natural or man-
made disasters, scientists develop mathematical models and hazard maps that can 
aid in evacuations. The maps are intended to help local emergency response teams 
make decisions about which areas to evacuate, yet there is uncertainty inherent in 
these visualizations because the risks cannot be modeled or predicted with perfect 
accuracy. There are tradeoffs between risks caused by the disaster itself and the 
risks that are inherent in large-scale evacuations. Evacuating an area that is too 
large would unnecessarily put more people at risk from other hazards, such as 
car crashes. Given these tradeoffs, what are the best ways to present information 
about uncertainty and risk so that these decision-makers can make the best possible 
decisions under stressful circumstances? To date, there is little research that would 
support a principled answer to this question. 

Research on visualization psychology has begun to develop frameworks that 
can help visualization designers to take human cognition into account. However, 
there is much more work to be done in this domain. There are numerous methods 
for visualizing uncertainty, and relatively few have been evaluated in controlled 
experiments that can indicate why one method supported better decision-making 
performance than another [64, 66]. The uncertainty visualization literature spans
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numerous domains, including cartography, scientific visualization, medicine, and 
natural resource management. While there have been numerous reviews and 
taxonomies of uncertainty visualization techniques written within the visualization 
research community, they tend to focus on the data being visualized rather than the 
people who will be using those visualizations. The lack of consensus about when 
and how to visualize information about uncertainty is a challenge for visualization 
designers [65]. This can also make it daunting for cognition researchers to identify 
the many techniques that are ripe for study from the perspective of their impact on 
human cognition and decision-making. 

The goal of this chapter is to compile the prior research on uncertainty visu-
alizations in a way that will inspire new research in the field of visualization 
psychology. We provide a broad survey of the different methods of uncertainty 
visualization that are commonly used in different domains, including statistical 
graphs, spatial and temporal visualizations, three-dimensional visualizations, and 
visualizations designed to support risk assessments and decision-making. Our focus 
is on identifying techniques that have been used in multiple domains and, when 
possible, what evaluations of those techniques can tell us about their effectiveness 
in terms of supporting the viewer’s decision-making process. 

We begin by providing an overview of the research on how people deal with 
uncertainty in general and then discuss important considerations for designing 
visualizations that incorporate uncertainty. We then review common methods of 
visualizing uncertainty for different types of datasets, highlighting those that have 
been empirically tested with respect to their impact on human decision-making. We 
identify common visual mappings and discuss the types of perceptual and cognitive 
biases that can be produced by each, linking these techniques back to the emerging 
research on visualization cognition. 

We approach the literature on uncertainty visualization from the perspective of 
human cognition because humans are the consumers of data visualizations, and they 
are using them to accomplish specific goals. By focusing on those goals and the 
types of uncertainty that are important in those situations, visualization designers 
can narrow down the range of visual metaphors that are appropriate to their specific 
application and weigh their pros and cons from the perspective of human cognition. 
In addition, cognition researchers can identify gaps in the existing literature where 
new research in visualization psychology can be brought to bear. 

14.2 Uncertainty and Human Decision-Making 

Several studies have demonstrated that information about uncertainty, whether 
verbal or visual, can impact people’s decision-making (e.g., [1, 5, 27, 33, 74, 89]). 
Making decisions under uncertainty is inherently difficult because even a “good” 
decision, based on the best available information, can lead to the wrong outcome 
[66]. In decision-making contexts, uncertainty often takes the form of different 
states or different outcomes that could occur with different probabilities. Numerous
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studies have demonstrated that people struggle to understand probabilities in general 
(cf. [46, 83]). When confronted with information that has uncertain accuracy, people 
often reject it completely, ignoring it during their decision-making process (cf. [59]). 
Alternatively, they may accept it completely, ignoring the probabilistic nature of the 
uncertainty [59] or misinterpreting uncertain information as if it were deterministic 
[72]. 

Foundational work by Tversky and Kahneman showed that when people make 
decisions in the face of uncertainty, they tend to use heuristics to reduce the 
complexity of the task. While these heuristics are generally very useful, they can 
lead to biases [145] and make it difficult for people to assess their own ability to 
manage uncertainty [114]. Three key biases described by Tversky and Kahneman 
are the representativeness heuristic, the availability heuristic, and the anchoring 
heuristic. Each of these heuristics has the potential to impact how people interpret 
uncertain information. 

The representativeness heuristic arises when people judge a particular item 
or event to be part of a category due to its similarity to other items or events 
in that category. People tend to give more weight to superficial similarities or 
stereotypes while giving less weight to sample sizes and the baseline probability 
of encountering the item or event in question [40, 51, 75, 145]. In the case of 
visualizations, visual similarities can invoke the representativeness heuristic. For 
example, visual boundaries can lead people to treat things inside of the boundary as 
being categorically different from things outside of the boundary, even if that is not 
actually the case [118]. 

The availability heuristic often comes into play when people assess the proba-
bility of an event or the frequency of a class. People tend to give higher estimates 
of frequency or probability in cases where they have personal experience with a 
particular outcome, cases where they can easily generate or imagine a larger number 
of examples, and cases with vivid or recent examples. While these patterns can 
indicate that there is a higher prevalence for a particular type of event, they can also 
produce substantial biases in reasoning [59, 75]. There is some evidence indicating 
that visual representations of information can also make that information more 
“available,” which could potentially lead to biases in reasoning and risk assessment. 
For example, comparisons of visual, verbal, and numerical representations of 
uncertainty have found that visual representations can lead people to treat the 
information as being more specific or more certain, changing the threshold at which 
they decide to act on the uncertain information [6, 72]. 

Anchoring bias occurs when people form an initial impression and make 
adjustments based on subsequent information. In many cases, those adjustments 
are too small, leading to a final estimate that is biased toward the person’s initial 
estimate [76, 109]. This can occur even if the information that supported the initial 
estimate is later discredited. The impact of discredited information can persist, 
biasing a person’s ultimate judgment [59]. In other instances, people choose to 
discount new evidence that contradicts their preferred hypothesis [59, 144]. In the 
case of visualizations, people may anchor their reasoning to one aspect of the
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visualization, such as the average value for a dataset, producing biases in judgment 
[112]. 

In addition to cognitive biases, humans are subject to perceptual biases. Our top-
down expectations about what we are going to see can impact and even override the 
bottom-up perceptual processing that is driven by the physical characteristics of a 
stimulus [23, 142, 149]. In other words, we tend to see what we expect to see [59]. 
In the context of data visualizations, there is also evidence that we also expect other 
people to see the same things that we see, even when that is not necessarily the case 
[151]. 

Perceptual biases also occur in other sensory modalities, such as touch. People 
are subject to illusions such as the size–weight illusion, where the smaller of two 
objects with the same mass is perceived to be heavier [135]. In our daily lives, 
we tend to compensate for these perceptual illusions because we can get real-time 
feedback. For example, even though people perceive smaller objects to be heavier 
no matter how many times they lift them, their motor system will adjust to the actual 
weight of an object after the first lift [135]. When dealing with data visualizations, 
there is often no feedback to correct for perceptual biases. However, recent research 
has shown that interactive visualizations that allow users to remove information that 
is salient but distracting can help to reduce biases in decision-making [28]. 

Several recent studies have identified perceptual biases that arise in the context of 
interpreting uncertainty visualizations (see [117], for a review). Even simple, widely 
used representations such as error bars can produce perceptual biases that lead 
to misinterpretations. These biases persist despite repeated exposure and domain 
expertise [24, 101, 112]. Other aspects of visualizations, such as visual boundaries, 
presentation of low-relevance items, occlusion, distortion, or over-simplification, 
can lead to perceptual and cognitive biases, exacerbating the problem of decision-
making in the face of uncertainty [14, 35, 117]. It may be feasible to reduce these 
biases in some cases, by choosing better visual representations of uncertainty or 
by introducing features such as interactivity. However, only a handful of studies 
have attempted to reduce biases through the manipulation of visual features or other 
aspects of visualization design, and those approaches have had mixed success [28]. 

14.2.1 How Do Different Representations of Uncertainty 
Impact Decision-Making? 

Given the various pitfalls related to decision-making under uncertainty, what kinds 
of representations are best for supporting unbiased (or at least less biased) decision-
making? A number of studies have compared verbal, numerical, and/or visual 
representations of uncertainty in order to address this question. 

Decision-making performance can be measured in terms of the speed of the 
decision, its accuracy, or both. It can also be assessed in terms of how well 
participants understand the risk involved in different decisions. Decision-making
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and human understanding of risk have received a great deal of attention from 
psychology researchers, so there are a relatively large number of studies that make 
direct comparisons between different visual, verbal, and numerical indicators of 
state uncertainty. 

Verbal representations of uncertainty can include descriptions of the uncertainty 
itself (i.e., “high,” “medium,” or “low”) or terms that describe the likelihood of a 
particular event, such as “very unlikely,” “rather likely,” or “almost certain” [6]. 
Numerical representations of uncertainty can include probabilities (0.15), percent-
ages (30%), ranges of probabilities or percentages (50–65%), odds ratios (“4.32 
times more likely”), or statistics about a distribution, such as mean and confidence 
intervals [6, 48, 72]. Visual representations of probabilistic information include 
pictographs [86], plots of probability distributions [66], and histograms [48, 66]. 
Many decision-making tasks also involve state uncertainty, situations in which the 
current or future status of some phenomenon is unknown. State uncertainty can be 
visualized in a variety of ways, as detailed in the sections that follow. These visual 
cues are often combined with verbal or numerical cues, particularly for tasks that 
involve assessments of risk [18, 43]. 

Several studies have demonstrated that the way in which uncertain information is 
presented, be it numerically, verbally, or visually, has an impact on human decision-
making performance. These studies have used a number of different tasks, including 
target detection tasks, choosing stocks, and making decisions based on weather 
forecasts [43, 82, 110]. The results indicate that visual representations of probability 
distributions can improve people’s understanding and decision-making relative to 
verbal or numeric information [48]. Visualizations of uncertainty can be particularly 
helpful when a task is difficult [18, 82] or when uncertainty is high [72, 74]. Some 
studies have also provided evidence that visualizations of uncertainty can help 
to mitigate biases in decision-making [73]. Combining information from multiple 
sources helps participants to understand uncertainty in the data and improves their 
trust in predictions based on that data [49, 72, 78]. 

A common finding across these studies is that when the task is relatively easy, 
such as when participants have unlimited time to make their decision, the way 
in which the uncertainty is represented does not typically have much impact on 
participants’ performance (cf. [6, 18, 82]). However, when the task difficulty is 
increased by adding time pressure or by adding more noise to the data, participants 
typically perform better with visual representations of uncertainty. For example, 
in target detection/identification tasks, participants tend to make decisions faster 
[43] and more accurately [82] when using visual representations instead of verbal 
or numerical representations. In a wildfire evacuation scenario [18], participants 
who had ample time to decide whether or not to evacuate performed best with 
text-based information, such as “Your house is located in the >80 to 100% burn 
zone.” However, when time pressure was applied, making the task more difficult, 
maps with visual representations of uncertainty outperformed the text condition. 
Similarly, Kirschenbaum and Arruda [82] found that participants performed equally 
well with verbal and visual representations of uncertainty when their target detection 
task was relatively easy. When more noise was added to the data, making the task
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more difficult, participants performed better when using visual representations of 
uncertainty. 

At the extreme end of the scale, when tasks become extremely difficult, 
all representations of uncertainty can become equally unhelpful. In the wildfire 
evacuation scenario used by Cheong and colleagues [18], adding a secondary task 
made participants’ performance to drop to chance, regardless of what uncertainty 
information they had or how it was represented. When the participants had high 
cognitive load, they were not able to make effective use of any of the representations 
of uncertainty. 

Although people often perform better when uncertainty information is provided 
than when it is not, many prefer point estimates and ignore uncertainty information 
when given a choice [78, 119]. They may not use all of the information that is 
available to them, particularly when that information is uncertain or probabilistic 
[26, 49]. Instead, they may be drawn to a single, salient piece of information at the 
expense of exploring all of the information [26], or they may develop a routine 
in which they use a few favored sources of information while ignoring others 
[71]. Finally, people who are using visualizations of uncertain information may fall 
prey to deterministic construal errors, in which they assume that the information 
they are seeing is deterministic rather than probabilistic. For example, Savelli and 
Joslyn [137] found that some participants interpreted a visual representation of the 
uncertainty in a weather forecast as if it were a deterministic forecast showing the 
high and low temperature. This type of error did not occur when participants saw 
only text, with no visualization of the uncertainty [72]. 

Experience with a particular domain or task also plays a role in whether and 
how people use information about uncertainty to make decisions. For example, 
Cliburn and colleagues [21] found that less experienced participants preferred a 
less complex representation of uncertainty, while more experienced participants 
preferred a representation that was complex and somewhat difficult to understand 
but conveyed more detailed information. Repeated exposure to a decision-making 
task with uncertain information can help participants to learn what kinds of 
information are most important to the task [110]. When studies use tasks that are 
highly familiar to the participants, such as asking experienced surgeons to complete 
a common procedure, participants may ignore visualizations of uncertainty, opting 
instead to look at the displays with which they are already familiar [139]. Aside from 
experience, individual differences in cognitive processing also play an important 
role in how people comprehend visualizations of uncertainty. For example, eye-
tracking data have shown that people with low and high numeracy (ability to 
understand numerical information) used very different processing strategies when 
shown pictographs that conveyed numerical information about risk [86]. 

In summary, numerous studies have demonstrated that humans struggle to deal 
with uncertain information and that the way in which that information is presented 
to people (whether numerically, verbally, or visually) can impact their decision-
making and task performance. Visual representations of uncertainty can help people 
to understand probabilistic or uncertain information, but the effectiveness of those 
visualizations often depends on the nature and difficulty of the task as well as the
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experience level of the participants. Even when useful information about uncertainty 
is available, people may not take advantage of it. 

Given that effective visualizations can help people to comprehend uncertainty 
and improve their decisions, how do we design visualizations that are effective for a 
particular task, data type, or user population? In the next section, we present several 
of the challenges that arise for designing and evaluating uncertainty visualizations. 

14.3 Why Is Visualization of Uncertainty Difficult? 

Uncertainty visualizations can be useful tools, but they also present a number of 
challenges for visualization designers and viewers alike. 

Designing effective data visualizations is a non-trivial task, and adding informa-
tion about uncertainty to the mix can dramatically increase the level of difficulty 
[65]. As more information is added to a visualization, it is easy for the visualization 
to become cluttered or confusing [8, 50, 66, 124]. Designers are faced with many 
choices about how to represent uncertainty [50, 121, 124]. It can be represented 
directly by mapping it to unused visual variables (e.g., color, size, transparency), 
adding graphical elements (e.g., error bars, glyphs, labels, overlays), altering graph-
ical elements (e.g., scaling, warping, distortion), creating multiple visualizations 
to enable side-by-side comparisons, adding dynamic features (motion, animation, 
or interactivity that reveals information about uncertainty), or adding non-visual 
features, such as sound. Uncertainty can also be used to modify the visualization in 
less direct ways, such as filtering the data or changing the way in which the data 
are processed, weighted, or modeled [50]. Both approaches have their drawbacks. 
Direct representations of uncertainty may not scale well to large datasets [50], may 
obscure important information [8], or can potentially lead to visualizations that 
are cluttered and confusing to the viewer [124]. Indirect representations may hide 
information that the viewer needs, lead to misinterpretations of the information, or 
lead to overconfidence or other types of cognitive biases if the viewer does not fully 
understand how uncertainty impacts the visualization. 

Visualizations of uncertainty are also very difficult to evaluate [64, 66, 80, 127]. 
A recent review paper by Hullman and colleagues (2018) characterized common 
methods for evaluating uncertainty visualizations. They found that most papers 
on uncertainty visualization did not evaluate the visualization’s effectiveness. For 
example, in one collection of 241 publications on uncertainty visualizations [124], 
they found only 48 papers that contained evaluative user studies. Among papers that 
did include user studies, few used realistic tasks that would translate to real-world 
decision-making, likely because it is very difficult to design realistic evaluation 
tasks with that are controlled enough to support clear conclusions [66, 80, 127]. 
In addition, few evaluations compared uncertainty visualizations to those that had 
no representation of uncertainty, making it difficult to evaluate whether adding 
uncertainty information was helpful to participants. Similarly, few studies tried to 
explore the reasons for the effects that they found (i.e., why and how participants
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made their decisions). Thus, even for studies that conducted empirical tests of their 
uncertainty visualization techniques, the challenges of designing evaluation studies 
mean that we are still left with relatively little insight into how the studied techniques 
would impact human decision-making in the real world. 

14.3.1 We Do Not Really Know What Uncertainty Is 

As complex as it is to select an appropriate and useful method for visualizing 
uncertainty, there is also a deeper, fundamental problem: there is no clear definition 
of uncertainty (cf. [98, 121, 140]). In theory, there are two fundamental types 
of uncertainty: aleatoric uncertainty, which is due to randomness and cannot be 
resolved, and epistemic uncertainty, which is due to a lack of knowledge and 
could be resolved with access to additional information [8, 124]. In practice, the 
term “uncertainty” is often used as a catch-all for all sorts of problems, many of 
which represent a mixture of aleatoric and epistemic uncertainty. This can include 
problems with data acquisition, such as missing data, erroneous data, imprecise 
measurements, noise, contradictory information, and outdated or untrustworthy 
sources [8, 50, 69, 99, 146]. It can also include problems that appear along the data 
processing pipeline, such as simplifying abstractions, resampling or interpolation, 
incorrect models or model parameters, or human error [8, 50, 69, 99, 103, 121, 150]. 
In addition to introducing uncertainty, these issues can create visualization mirages 
where a visualization appears to support an interpretation that is not actually 
accurate [105]. Finally, uncertainty can include issues that are introduced by the 
visualization process itself, such as the choice of rendering algorithms [121], and by 
perceptual or cognitive difficulties encountered by people viewing the visualization 
[8, 12, 69]. 

The wide array of issues that fall under the heading of “uncertainty” in the realm 
of data visualization creates challenges. In practice, uncertainty is often treated 
as an attribute of the data [99]. Visualizations of uncertainty typically depict the 
presence of uncertainty and sometimes the amount or location of the uncertainty, 
but other aspects of uncertainty are rarely visualized, and different sources or 
causes of uncertainty are rarely distinguished from one another. For example, 
in the public health domain, data are collected and aggregated from numerous 
disparate sources, which leads to errors and discrepancies. Public health experts 
are knowledgeable about the causes and impact of this implicit measurement error, 
but information about the inherent uncertainty in the data is not explicitly measured 
or recorded. This represents a challenge for data visualization, since visualizations 
of data with implicit error will not reflect the domain experts’ knowledge of the 
situation. However, it also presents opportunities for using visualizations to expose 
and analyze implicit error [103]. 

In summary, any given dataset and analysis pipeline will have different types 
of uncertainties, and two different visualizations of uncertainty, even in the same 
domain, may be representing very different types of information. Visualization
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designers must make choices about what to represent, but it is often unclear which 
types of uncertainty are meaningful or helpful to the people who are using the 
visualizations. 

14.3.2 Why Should We Bother? 

Given all of these difficulties, how should we proceed? As discussed in Sect. 14.2, 
uncertainty visualizations can be helpful for conveying risk [18, 86], making 
decisions [43, 82, 110], and avoiding cognitive biases. But are they worth the effort 
if they are so difficult to design and to evaluate? Should we bother to visualize 
uncertainty at all? 

In many cases, the answer is still “yes.” Comprehension of uncertainty is often 
necessary for establishing scientific or analytical understanding [117]. For this 
reason, various organizations have stressed the importance of conveying uncertainty 
[68, 111, 143]. Many visualization designers work in domains where visualizing 
uncertainty is crucially important, and they must figure out how to do it in the most 
effective way possible. 

Fortunately, there is growing body of studies that have assessed the impact 
of different representations of uncertainty on human comprehension, task perfor-
mance, or decision-making. These studies are often specific to a particular task 
or data type (such as geospatial data or flow modeling), but it is likely that there 
are commonalities in how different representations of uncertainty impact human 
cognition across a variety of different tasks and domains. Visualization psychology 
has emerged as a field of research that looks for systematic relationships between 
cues that are used in visualizations and patterns of human cognition and decision-
making. This research is helping to connect the large body of research on human 
cognition to the research on visualization techniques, enabling the development of 
principled approaches to designing visualizations that will best support cognition 
[45, 117, 118]. 

In this chapter, we aim to aid both visualization practitioners and visualization 
psychology researchers by surveying approaches to uncertainty visualization from 
multiple domains. In Sect. 14.4, we discuss the types of questions that can inform 
choices about the design of a visualization that includes information about uncer-
tainty. In Sect. 14.5, we present a high-level overview of different techniques that 
are commonly used to convey information about uncertainty. In Sect. 14.6, we dig  
into more detail to examine how different approaches to uncertainty visualization 
have been applied within specific domains. Wherever possible, we focus on methods 
that have been evaluated and shown to benefit users’ performance or cognitive 
processing. Our goal is to identify the advantages and disadvantages of different 
types of visual mappings, based on prior empirical comparisons and theories of 
visualization psychology. 

Methods for quantifying uncertainty are outside of the scope of this review. 
While this is an interesting and challenging problem in and of itself, our focus
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is on presenting an overview of the current landscape of uncertainty visualization 
methods. Once the relevant uncertainty in a dataset, analysis pipeline, or rendering 
approach has been characterized, what are the most effective methods for conveying 
that information to the viewer? For overviews of methods for quantifying or 
characterizing uncertainty, we direct the reader to prior review papers on that topic 
[8, 50, 140, 144]. 

14.4 Design Considerations for Uncertainty Visualizations 

The starting point when designing a visualization that includes information about 
uncertainty should be the needs of the intended users. A very useful approach for 
thinking about the users’ needs is the typology of visualization tasks developed by 
Brehmer and Munzer [13] (see also [108]). This typology considers why people are 
performing a task, how they are performing that task, and what kinds of information 
are involved. A similar approach could be used for thinking about the design of 
uncertainty visualizations: why do users need information about uncertainty and why 
are specific types of uncertainty important? How are users interacting with the data 
visualization and how is uncertainty likely to impact those interactions? What type 
of data or information is being used and what kinds of visual representations are 
appropriate? The answers to these questions can vary widely across domains, and 
they can help to constrain the range of possible uncertainty visualization techniques 
that should be considered. 

14.4.1 Why Do Users Need Information About Uncertainty? 

The key question for uncertainty visualizations is what types of uncertainty are 
important for the intended users and use cases. As discussed above, there are 
numerous sources of uncertainty in any data collection, analysis, and visualization 
pipeline. However, some of these sources of uncertainty may be critically important 
to the user, while others may be irrelevant. Since uncertainty visualization is 
difficult to begin with, it is important to focus only on the types of uncertainty 
that will add value for the user, such as those that should have a high weight 
in the user’s decision-making [51]. In some cases, representing the existence of 
uncertainty is sufficient. This is relatively easy and can be accomplished with many 
different methods [50]. In other cases, it is important to convey the amount of 
uncertainty, which requires a quantitative approach, or the nature of the uncertainty, 
which could be quantitative or qualitative. The specific details of these situations 
constrain the types of visual metaphors that can be used to convey the relevant 
information. Finally, in many situations, there are multiple types of uncertainty that 
are important to the user [98, 140, 144]. It may be necessary to prioritize certain 
types of uncertainty over others or to create multiple visualizations of a single
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dataset to address this challenge. A common approach is to simplify the uncertainty 
information into a more manageable value, such as a standard deviation, but this can 
lead to misrepresentations of the data [124]. 

14.4.2 How Will Uncertainty Impact Users’ Interactions with 
the Data Visualization? 

Here we must consider the cognitive impacts of uncertainty and how uncertainty 
visualizations might alter users’ approach to their tasks. Skeels and colleagues 
[140] found that people confronted with uncertainty either sought ways to increase 
their certainty or reached a point at which they had to live with the uncertainty 
and make a decision despite it. In other cases, people confronted with uncertain 
outputs will mentally substitute that information with other information that is 
easier to understand [117]. These findings highlight the importance of considering 
how users will respond to information about uncertainty. Ideally, they will use it to 
understand the limitations of the information they have and then seek out additional 
information to inform a more nuanced decision. However, if we do not consider 
the difficulty that people, including domain experts, have with comprehending 
uncertainty, visualizations of uncertainty might confuse and frustrate viewers, 
contribute to cognitive biases, lead to poor decisions, or cause them to throw up 
their hands and give up altogether. 

14.4.3 What Kinds of Visual Representations are Appropriate? 

In many cases, the nature of the data and the uncertainty being visualized constrain 
the number of viable visual metaphors. Many of the existing taxonomies of 
uncertainty visualization map characteristics of the data, such as its dimensionality, 
to appropriate visualization techniques. For example, Pang and colleagues [121] 
developed a classification of visualization methods with five characteristics: 

1. The value of a datum and the uncertainty of that value (scalar, vector, tensor, 
multivariate) 

2. The location of a datum and its positional uncertainty (spatial, temporal, etc.) 
3. The extent of datum location and value (discrete or continuous) 
4. The extent of the visualization (discrete or continuous) 
5. Axes mapping (experiential or abstract) 

By contrasting any of these characteristics against one another, it is possible to 
map out the approaches to uncertainty visualization that provide the best fit for 
that set of characteristics. For example, datasets with scalar values and a discrete 
visualization extent are good candidates for techniques such as error bars, while
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scalar data with a continuous visualization extent are better suited to techniques 
such as contour lines or color maps. 

Potter and colleagues [125] simplified this approach by developing a taxonomy 
that contrasts the dimensionality of the data (1D, 2D, 3D, ND) with the dimen-
sionality of the uncertainty (scalar, vector, or tensor). They describe the uncertainty 
visualization approaches that have been used for various combinations of these 
dimensions and identify combinations where techniques have yet to be developed. 

In addition to considering the dimensionality of the data and of the uncertainty, 
it is important to consider the types of visual metaphors that are commonly used 
in a particular domain. Some domains lend themselves naturally to certain types 
of representations, such as the use of cartographic representations for geographic 
information systems (GIS) data [98]. Similarly, isosurfaces representing uncertainty 
are widely used in 3D scientific visualizations [69, 124]. For these domains, 
these techniques are experiential visualization methods, which use representations 
that link to a viewer’s experience with the visualized phenomenon [121]. Other 
domains may lend themselves better to abstract mappings, such as projecting multi-
dimensional data into a 2D scatterplot or using other types of aggregation and 
clustering methods. 

It is important to note that some types of visual variables work better for specific 
types of uncertainty than others. There are fewer techniques that can be applied to 
3D data than there are for 1D or 2D data [124]. Yet even for 1D or 2D data, not all 
representations are created equal. MacEachren [98] points out that certain types of 
visual representations are better suited for ordered or numerical data, while others 
are better suited for representing nominal or categorical differences. In the case of 
categorical data, the number of categories that the user must track is also important. 
It is difficult for viewers to track more than a handful of textures or colors [30, 98]. 
In addition, some representations of uncertainty, such as glyphs added to a display, 
may work well for small datasets but will not scale to larger datasets [121]. Finally, 
some visual representations of uncertainty are more intuitive to viewers than others 
for certain types of information. For example, the visual metaphors that are most 
intuitive for representing spatial uncertainty differ from those that are most intuitive 
for representing temporal uncertainty [100]. 

14.5 Common Methods for Visualizing Uncertainty 

As discussed in Sect. 14.5, uncertainty can be represented explicitly, by mapping it 
to visual features in the visualization, or it can be represented implicitly, by changing 
the way the data are processed, filtered, or weighted. Although at least one study has 
indicated that people can successfully identify the presence of uncertainty when it 
is visualized implicitly rather than explicitly [27], the vast majority of the research 
on visualizing uncertainty has focused on explicit representations. 

Explicit representations of uncertainty can include both intrinsic methods, where 
the appearance of an object is changed, and extrinsic methods, where symbols such
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as glyphs or error bars are added to an image [63]. A third approach is to create 
multiple visualizations (or animations) to depict uncertainty via comparisons. In 
this section, we compare and contrast these common approaches. The examples that 
follow do not present an exhaustive list of methods for representing uncertainty, 
but rather aim to illustrate the advantages and disadvantages of using intrinsic 
representations, extrinsic representations, and multiple visualizations to convey 
information about uncertainty. 

14.5.1 Intrinsic Representations of Uncertainty: Modifying 
Visual Attributes 

Any graphical variable (color, size, shape, etc.) that is not being used to represent 
other attributes of a dataset can be used to represent uncertainty about the data. In 
practice, the most common approach for intrinsic representations of uncertainty is 
to use fog as a visual metaphor [98, 100, 117]. Visualization designers manipulate 
color and/or texture to make more certain data appear crisp while less certain data 
appear blurry or faint (Fig. 14.1). While this analogy is rarely stated explicitly, it 
shows up in many different domains, as illustrated in the sections below. The fog 
metaphor also exploits the human visual system’s tendency to perceive things with 
sharper edges and more saturated colors as being closer, while objects with fuzzier 
edges or muted colors are perceived as being farther away [145]. This means that 
the uncertain information is perceived as if it is farther away from the viewer and 
therefore less “solid” or less important. 

Fig. 14.1 An example of saturation and edge fuzziness being manipulated using the fog metaphor 
for uncertainty
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Visual attributes that are used in service of the fog metaphor include blur, reduced 
saturation, reduced sharpness, transparency, and dashed or irregular outlines. Fog-
giness is a natural and easily understandable representation of uncertainty, so these 
techniques are often effective, as demonstrated by the papers reviewed in this 
chapter. However, this approach is not without its drawbacks. In some cases, viewers 
interpret these types of visual manipulations as stylistic rather than mapping them 
to uncertainty [12]. The fog metaphor can also be interpreted in conflicting ways. 
Some researchers have used increased opacity to represent increased certainty [34], 
while others have used increased transparency to represent increased certainty [98]. 
Given that even a naturalistic metaphor can be applied in different ways, viewers 
must be informed of the meaning of these cues in order to interpret them correctly. 

Color coding is another visual manipulation that is widely used to encode 
information about uncertainty. Color can be manipulated in a variety of ways by 
changing hue, value, saturation, or transparency (Fig. 14.2). A common approach 
is to map uncertainty to saturation (i.e., data with higher certainty are represented 

Fig. 14.2 Examples of color being used to represent the uncertainty in some dataset. In the two 
examples on top, saturation is used to represent uncertainty, but in opposite ways. In the top left, 
more saturated colors represent higher certainty, while in the top right, more saturated colors 
represent higher uncertainty. In the bottom-left example, each level of uncertainty is assigned to 
a different hue. In the bottom-right example, levels of uncertainty lower than some threshold are 
assigned to one hue, and levels of uncertainty higher than that threshold are assigned to another. 
This creates strong perceptual boundaries that may lead participants to treat things inside the 
boundary as being categorically different from things outside of the boundary, even if that is not 
the case
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with more saturated colors). Several researchers have argued that this is an intuitive 
mapping, but some experimental results suggest otherwise. Across several studies, 
participants reported a preference for visualizations in which uncertainty was 
mapped to color saturation. However, those same participants performed worse on 
decision-making tasks when uncertainty was mapped to color saturation than when 
other representations of uncertainty were used [34, 99, 113]. This indicates that 
color saturation was not a particularly helpful index of uncertainty even though the 
participants felt that they had an intuitive understanding of it. 

However, it is possible to use color to draw viewers’ attention to information 
about uncertainty. Some recent work has developed color palettes that make it 
difficult for viewers to determine the precise value of uncertain data points [25]. 
The researchers demonstrated that these color palettes led viewers to give more 
consideration to the uncertainty of the data when making decisions. In this case, 
it is not necessarily the color saturation that is drawing the participants’ attention 
to the uncertainty, but rather the difficulty of identifying the values of specific data 
points. 

Other issues with color mappings can arise when people interpret them in 
unexpected ways. Recent work has shown that people exhibit a bias toward 
expecting darker colors to represent larger quantities. This bias runs counter to 
many common color maps, which typically use brighter values to represent higher 
values [138]. This could lead to misinterpretations in the context of uncertainty 
visualization, where a mapping between hue and uncertainty may seem intuitive 
to the visualization designer, but may be interpreted in a different way by viewers. 

Finally, mapping uncertainty to a small set of colors can produce undesirable 
perceptual effects, such as creating visually salient boundaries that emphasize one 
particular change in probability while obscuring other, equally important changes 
[126]. Thus, while mapping uncertainty to manipulations of color appeals to 
many visualization designers and viewers, the research to date indicates that these 
mappings may produce perceptual biases that are not yet well-understood. 

For any intrinsic representation of uncertainty, it is important to note that some 
visual metaphors may be better suited to specific domains than others. For example, 
using blur to depict uncertainty about the position of a moving vehicle maps well to 
human perception of motion [132], but this technique cannot be applied to particle 
movement datasets, which are often so large that blur would be imperceptible 
[56]. To give another example, size is a graphical element that can mean different 
things in different domains. In scientific and geospatial visualizations, data with 
more uncertainty often map to larger graphical elements. In the case of 3D flow 
visualizations, this might take the form of a larger envelope of uncertainty [17], and 
in the case of land use maps, this might take the form of smaller squares in areas 
where the data are more precise and larger squares for data that are less precise 
[34]. However, in more abstract visualizations, larger elements might represent 
information that has higher certainty, while less certain information is minimized.
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14.5.2 Extrinsic Representations of Uncertainty: Adding 
Graphical Elements 

Perhaps the best-known way to depict uncertainty in data visualizations is through 
the addition of error bars. These can be used in one-dimensional representations, 
such as statistical graphs [121], and they can also be extended to two- or three-
dimensional datasets. For example, in a 2D dataset, error bars can be depicted 
as an ellipse or cone around the point of interest [70]. In 3D datasets, error is 
often represented by a transparent isosurface or surrounding a more solid shape 
(cf. [17]). Error bars have the advantage of being widely used, but they are often 
misunderstood, even by domain experts [3, 24, 101, 112]. The use of error bars 
can also imply that the data have a normal distribution even when that is not the 
case [124]. Alternative approaches that address this concern include plotting the 
probability distribution function (e.g., [78]) or providing a summary of it with a box 
plot [104] or a five-number summary [128]. Distributional visualizations such as 
quintile dot plots, which give information about the shape of a distribution while 
also allowing viewers to compute the probability of different outcomes, have been 
shown to be particularly effective for helping people to understand risk [42, 78, 116]. 
Distributional visualizations expose aspects of the data that would be hidden by 
simpler representations, such as bar charts with error bars. 

Labels, numbers, and glyphs can also be added directly to a visualization to 
represent uncertainty. Numbers or labels can directly convey information such as 
probability [6, 43], while glyphs can convey uncertainty through their shape, color, 
or sharpness [6, 70, 121]. While this approach may be highly effective for small 
datasets, it may not scale well to larger datasets, where the added information 
may obscure other parts of the visualization, create clutter, or lead to unintended 
perceptual effects [21, 121]. Similarly, overlays can be used to represent uncertainty 
over large sections of a visualization. These can be particularly useful for spatial 
data [80, 81, 98], but they can also obscure features of interest in the data. 

Uncertainty information can be added in the form of non-visual information, 
such as auditory or tactile signals [2]. However, there is relatively little research on 
multi-modal representations of uncertainty, and the utility and effectiveness of this 
approach are unclear. 

14.5.3 Creating Multiple Visualizations 

Uncertainty can also be conveyed through the use of multiple visualizations. 
Common approaches include presenting the data and the uncertainty side-by-side, 
allowing users to toggle between different representations, using flickering or 
blinking in which the uncertainty visualization appears as a transient overlay on 
top of the data, or creating animations of the data. Side-by-side comparisons are 
relatively common for geospatial data [36, 80]. The drawback of this type of display
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is that subtle differences can be difficult to detect. Flickering or blinking displays 
will draw viewers’ attention to differences via illusory motion, but users may find 
this to be distracting or annoying [39, 107]. Allowing users to toggle between the 
visualization of the data and visualizations of uncertainty can provide a compromise 
between these two approaches, but users may not understand how to toggle between 
the displays or may simply choose not to, ignoring the uncertainty information 
[39]. Finally, animations can provide a comprehensive picture of a dataset and its 
associated uncertainty, but they can place a high burden on the viewer’s cognitive 
resources, particularly if the viewer must remember and integrate information from 
different parts of the animation [94]. 

Another approach to conveying uncertainty is the use of hypothetical outcome 
plots (HOPs). HOPs use animation to show different samples from a distribution in 
a sequence of frames [77]. Research on HOPs has shown that they allow viewers to 
estimate the probabilities of different events, often leading to better estimates than 
other types of visualizations [62, 67, 77]. Although this approach seems promising, 
HOPs may introduce sampling error if viewers only see a subset of samples from 
the distribution (or if they stop watching before the animation is complete), and 
they may struggle to integrate some types of information across the different frames 
[67, 152]. For example, in a network visualization task, participants had a hard 
time identifying distinct communities in the network when they had to integrate 
that information across multiple realizations of a network [152]. HOPs have only 
been tested for a relatively small number of tasks to date, so there is not yet a clear 
consensus on the types of tasks that are well-supported by HOPs [67]. 

14.5.4 Summary 

For each of the techniques outlined in this section, there is an orthogonal question 
regarding how much the viewer’s attention should be drawn to the uncertainty in 
the data as opposed to the data itself. This brings us back to the questions about 
why users need information about uncertainty and how it will impact their task. Do 
they simply need to be aware of the existence of uncertainty? Or do they need to 
know the type or amount of uncertainty? Is information about uncertainty likely to 
produce cognitive biases, and are these desirable? In some cases, it may be desirable 
to emphasize the uncertainty so that viewers are sure to notice its presence or 
incorporate it into their decision-making [25]. In many domains, such as intelligence 
analysis or medicine, the costs of different types of errors are asymmetric, so 
exaggeration of uncertainty and a consequently biased reasoning strategy may be 
beneficial [58, 59]. 

Just as each of the methods for visualizing uncertainty has specific strengths and 
weaknesses in terms of human perception and comprehension, they also vary in 
their compatibility with different types of data and different types of uncertainty. 
Examples of how these methods are used in different domains and for different 
types of uncertainty are presented in the section below, along with information about
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which methods were most effective in cases where different methods have been 
compared directly. 

14.6 Applications of Uncertainty Visualization Techniques 
in Different Domains 

In this section, we dive into more detail by comparing ways in which some of 
the techniques discussed in Sect. 14.5 have been applied in different domains. 
The efforts to evaluate the effectiveness of uncertainty visualizations for different 
data types and different domains have been very uneven. For example, there has 
been a substantial effort to formalize approaches to uncertainty visualization for 
geospatial data, and there have been prior reviews of the literature in this area, 
notably by Drecki [34], MacEachren and colleagues [99], and by Kinkeldey and 
colleagues [81] and [79]. Another very useful review that addresses statistical 
graphs and infographics is provided by Franconeri and colleagues [45]. However, 
in other domains, such as scientific visualization, there have been few attempts 
to evaluate the effectiveness of different visualization techniques, much less to 
review and consolidate information about how different techniques might impact 
comprehension and decision-making. 

In this section, we attempt to address this unevenness by discussing uncertainty 
visualization techniques that have been well-studied in one domain while going 
unevaluated in others. Our goal is to identify areas where there are gaps in the 
existing literature that could be addressed by future research. In particular, our goal 
is to identify instances where findings from one domain set up testable hypotheses 
in other domains where the generality of different findings could be explored. 

14.6.1 Intrinsic Representations of Uncertainty 

14.6.1.1 Hue 

As discussed in Sect. 14.5, color is one of the most common ways of representing 
uncertainty in data, so it is also one of the techniques that has been most widely 
studied. However, it has not been thoroughly evaluated across all domains. There 
have been multiple studies that evaluate visualizations that use hue to encode 
uncertainty for geospatial data, but almost none that have evaluated the effectiveness 
of similar encodings for 3D spatial data or spatiotemporal data. Yet the findings from 
the geospatial domain suggest that color coding is not always as intuitive as it may 
seem, which could have important ramifications for visualizations in those other 
domains. 

In many geospatial applications, hue is used to encode aspects of the data, so 
the saturation of the colors is a salient channel for indicating uncertainty [80].
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Although this approach is widely used and participants believe it to be intuitive, 
direct comparisons have shown that color saturation is often less effective than 
other representations of uncertainty, such as transparency [80, 100]. A study of 
2D spatial data from the scientific visualization domain also found that mapping 
uncertainty to color could produce undesirable perceptual effects. A two-color 
mapping for different levels of probability within a visualization produced visually 
salient boundaries that emphasized one particular change in probability while 
obscuring other, equally important changes [126]. These studies indicate that 
there are drawbacks to using color hue or saturation to encode information about 
uncertainty. 

Despite these findings for geospatial data and 2D scientific data, color is still 
widely used to encode uncertainty in 3D spatial visualizations (cf. [11, 56, 90, 93]). 
Representing uncertainty in 3D visualizations creates additional challenges because 
of the increased visual complexity of the data and the increased potential for 
obscuring part of the visualization (cf. [123]). Praßni et al. [126] point out that 2D 
visualizations can depict details about uncertainty, whereas 3D visualizations are 
better suited to provide an overview of which regions of the volume are uncertain. 
Similarly, Potter and colleagues [125] note that uncertainty visualization techniques 
used for 3D data typically show the location and relative size of the uncertainty 
instead of more detailed information. 

Given the difficulty of visualizing uncertainty in three dimensions, many 
researchers have mapped uncertainty information to hue, saturation, and/or 
brightness [22, 55, 95, 122, 131], operating under the assumption that color 
mappings are highly intuitive. However, there have been few studies to test the 
effectiveness of these encodings for 3D spatial data. Many of the studies on 
uncertainty visualizations for scientific data propose different approaches but do not 
test the impact of those approaches on comprehension or cognition. This is a gap in 
the current literature. Given that color mapping can produce undesirable perceptual 
effects in 2D visualizations, such as spurious boundaries [126], the same may be 
true for 3D visualizations, but this question and related questions about how color 
mappings impact viewers’ perception and understanding of 3D visualizations have 
not been adequately explored. 

14.6.1.2 Transparency and Texture 

A less widely used, but potentially more effective alternative for conveying uncer-
tainty in geospatial data is the use of transparency. Several studies have shown that 
manipulations of transparency and texture attributes have been shown to be effective 
for conveying uncertainty in geospatial data [34, 87, 89, 113]. Influential work in this 
domain has advocated for using the fog metaphor, implemented via manipulations 
of hue and edge crispness [99]. When using the fog metaphor, areas with higher 
certainty have more saturated colors and crisp edges, making them appear bright 
and clear. Meanwhile, areas with uncertain data use less saturated colors and blurred
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edges, making them look as if they are obscured by fog. This metaphor draws on 
naturalistic cues, and it rated by viewers as being highly intuitive [100]. 

Manipulations of transparency have also been used for 3D visualizations. A 
common application of this approach is the use of fuzzy boundaries to represent 
uncertainty about the spatial extent of some object or phenomenon (cf. [44, 93]). 
However, the visual metaphors used for 3D visualizations are often the opposite 
of those used for 2D visualizations. For example, instead of making uncertain 
areas appear to be foggy and visually obscured in 3D visualizations, it is more 
common for areas with high uncertainty to be represented by increased transparency, 
making them less visible altogether. Using transparency to encode uncertainty can 
be particularly useful in 3D visualizations, because increased transparency can 
reduce occlusion [94, 130]. 

User studies focused on specific domains have indicated that transparency 
manipulations can improve viewers’ ability to accurately segment images [126] and 
to determine whether a marker is inside or outside of the error margin for a surface 
[53]. However, transparency does not provide precise quantitative information 
[94], which can impact viewers’ understanding of the uncertainty. In addition, 
manipulating the transparency of uncertain data points or regions is often perceived 
as a change in texture when there is other data behind those regions in the 3D 
space [52, 53, 126]. This can produce undesirable perceptual effects. For example, 
Djurcilov and colleagues experimented with mapping the uncertainty for variables 
of interest to transparency. This mapping produced a speckly or textured appearance 
for regions of the visualization where the data were more uncertain [30, 31]. They 
found that these discontinuities in opacity could be misleading, as many small 
discontinuities in one region of the visualization could be perceived as a change 
in color rather than a change in transparency or texture. In addition, it was difficult 
for people to distinguish more than a few levels of uncertainty in this scenario. 

Manipulations of transparency and texture can also be used to produce a blurring 
effect [10, 115]. Several prior studies have found that blur is an intuitive representa-
tion of uncertainty [12, 98], although it is difficult to quantify the difference between 
different levels of blurriness [12, 85]. Blur might be a useful technique for reducing 
some of the biases invoked by visual boundaries. As discussed earlier in this chapter, 
sharp visual boundaries can cause people to treat things inside of a boundary as 
being categorically different from things outside of the boundary, even when this is 
not actually the case or when the placement of the boundary is somewhat arbitrary 
[117]. It is reasonable to hypothesize that blurring may help to reduce this effect, 
but this hypothesis has not yet been thoroughly tested across different tasks and data 
types. 

Blur is also a naturalistic metaphor for motion. For example, Roessing and 
colleagues [132] developed a framework to enhance the user’s ability to make 
assessments of motion, speed, and distance of approaching cars in a rearview 
camera. They found that artificial motion blur supported more accurate assessments 
of speed and distance, aiding safer lane changes. In contrast, there was not a 
significant benefit from a visualization of risk potential in which a color overlay 
indicated the estimated time to impact for the approaching car. This provides an
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example where a more natural visual mapping (more blur for increased speed 
instead of color coding based on risk) supported more accurate interpretations. 

14.6.1.3 Summary 

In summary, although color coding is often perceived to be an intuitive rep-
resentation of uncertainty, it often falls short when compared to other intrinsic 
representations. Most comparisons of this type have been done using 2D spatial 
data. It seems likely that similar patterns would hold for 3D spatial data, but there 
have been very few direct comparisons between different uncertainty visualization 
techniques for 3D data. Many 3D spatial visualizations use color to encode 
uncertainty under the assumption that this will be an intuitive representation but fail 
to test that assumption. The lack of research identifying effective representations of 
uncertainty for 3D data is an important gap in the existing literature. This question 
will become increasingly important as visualizations that incorporate augmented or 
virtual reality technology become more common. 

Manipulations of transparency or texture that use fog or blurriness to convey 
uncertainty tend to perform well for 2D spatial visualizations and for representations 
of motion. However, these techniques may produce undesirable perceptual effects 
in 3D datasets. In addition, fog and blur are not appropriate metaphors for all 
types data. The fog metaphor might be misleading in the context of weather data, 
for example. In addition, some datasets are so large that blurring of certain data 
points would be imperceptible [56]. However, given the relative success of these 
metaphors relative to other intrinsic representations of uncertainty, they warrant 
further research. It would be useful to develop a systematic understanding of when 
the fog and blur metaphors support human comprehension and when they do not, 
across a wider variety of data types and domains. 

14.6.2 Extrinsic Representations of Uncertainty 

As discussed in Sect. 14.5, the mostly commonly used extrinsic representations of 
uncertainty are glyphs, and the most common glyphs for representing uncertainty 
are error bars. Bar charts with error bars are one of the most common methods 
of data visualization in scientific papers. Although error bars are widely used, 
even experienced scientists have difficulty with interpreting them correctly. Several 
studies have demonstrated that researchers who produce and consume statistical 
graphs frequently misinterpret the relationship between error bars and statistical 
significance as well as the meaning of different types of error bars, such as 
confidence interval (CI) and standard error (SE) bars [3, 101]. 

Several studies have found that there are design tradeoffs for statistical graphs 
because the visual encodings chosen for the mean and error in a dataset change 
viewers’ interpretation of the data. Divis and colleagues [29] found that participants
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were overly generous with SE error bars, interpreting the difference between two 
datasets as significant even when it was not. In contrast, the participants were overly 
conservative with CI error bars, interpreting significant differences as if they were 
not significant. Several studies have found that bar graphs cause cognitive biases 
even when they do not have error bars. Participants who made decisions based on 
bar graphs consistently demonstrate “within-the-bar bias,” interpreting values within 
the bar as being more likely than values outside of the bar [24, 112]. 

However, other work has found that participants who have experience with 
producing and interpreting statistical graphs have better performance when using 
error bars relative to using less familiar plot types, such as violin plots [101]. While 
these experienced participants exhibited consistent biases in how they interpreted 
the error bars, they were faster, more accurate, and more confident in their 
assessments of the datasets when using error bars than when using any other type 
of visualization. These findings indicate that familiarity and experience with visual 
encodings of uncertainty play an important role in their effectiveness (see also [57]). 

For some types of data, error bars may provide an especially effective visual 
metaphor. In one of the few studies to study visualizations of temporal uncertainty, 
Gschwandtner and colleagues [54] used a variety of representations, including 
gradient plots, violin plots, accumulated probability plots, and error bars, to 
represent the start and end times of intervals. This study found that participants 
performed best when using error bars and variants of error bars, such as using a 
lighter hue for the uncertain regions of the intervals. In this case, the visual cues 
provided by the error bars may have been the best match for the cognitive demands 
of the task. In addition, the manipulation of hue might reduce some of the known 
biases that are associated with error bars by reducing the salience of the visual 
boundaries that error bars can create. 

Glyphs are also widely used in the domain of weather forecasting, where there 
is also evidence that experience plays a role in how people interpret uncertainty 
visualizations. For novice viewers, different representations of uncertainty produce 
different patterns of biases in novice viewers. When viewing hurricane forecasts, 
participants shown the typical “cone of uncertainty” that often appears in media 
coverage of hurricanes believed that the cone represented an increase in the strength 
and size of the hurricane over time, rather than information about the uncertainty of 
the hurricane’s path [120, 134]. People also tend to think that areas outside of the 
visual boundary created by the cone visualization are categorically different than 
areas inside of the boundary, producing biases in their assessments of risk [117]. 
When shown ensemble displays, or “spaghetti plots” in which multiple possible 
hurricane paths are each represented with a single line, participants believed that 
the storm was less intense when the lines were farther apart. They also believed 
that locations “touched” by one of the lines in the ensemble display would receive 
more damage from the storm [120]. In both cases, visually salient features of the 
uncertainty visualizations were interpreted in unintended ways by the viewers. The 
visual–spatial biases revealed by these studies show the value of using rigorous 
cognitive science methods to study the impact of different visual representations on 
human biases and decision-making.
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Glyphs have also been used to convey uncertainty in 3D visualizations. They 
have the benefit of condensing information so that more information can be 
displayed while minimizing the occlusion of other features of the visualization 
[61, 70, 93, 94, 96, 113, 153]. Glyphs have been shown to have advantages over 
other representations of uncertainty in some studies. Vector glyphs (arrows) can be 
particularly useful because they provide an intuitive representation of flow, such as 
the movement of air or water. While the arrows show the direction and magnitude 
of flow, features such as their width or color can be used to depict measurement 
uncertainty [148]. In this case, a user study indicated that expert participants, who 
had prior experience with interpreting glyphs, were equally successful in terms of 
interpreting the glyphs themselves and interpreting the uncertainty represented by 
manipulating the glyphs. 

Newman and Lee [113] asked participants to rate their perception of different 
types of glyphs as well as other representations of uncertainty, such as transparency 
and color coding. The glyphs included cylinders, cones, balls, arrows, and multi-
point glyphs, where the uncertainty was encoded by one aspect of the geometry of 
each type of glyph. For example, the local uncertainty was represented by the height 
of the cylinder glyphs, the base diameter of the cone glyphs, or by the radius of the 
ball glyphs. The participants’ ratings were strongly dependent on the type of glyph 
used. They preferred the glyphs over color coding and transparency when asked 
how easy it was to identify the information about uncertainty in the visualization. 
However, some glyphs received poor ratings when the participants were asked about 
the ease of identifying the data (rather than the uncertainty) and the visual clutter in 
the images. Essentially, the glyphs made the uncertainty information highly salient 
but obscured some of the data itself. This study provides another illustration of the 
point that glyphs that do not naturally map to the information in question might be 
more distracting than helpful. 

Lodha and colleagues [95] found that glyphs helped viewers to understand the 
differences between two overlaid surfaces. In this case, glyphs were used to fill 
the space between the two surfaces, highlighting where the location and relative 
magnitude of the differences. They found this technique to be more effective than 
other methods, including color coding, transparency, and texture manipulations. 

14.6.2.1 Summary 

Glyphs may have advantages over other representations of uncertainty in some sce-
narios, particularly for 3D visualizations. However, as with intrinsic representations 
of uncertainty, using glyphs that provide an appropriate visual metaphor for the 
domain may be important. This point has received relatively little attention and 
warrants further research. Are there ways to manipulate the visual attributes of 
glyphs in ways that make them more intuitive or reduce cognitive biases? We return 
to this point in the section on statistical graphs, below. 

Importantly, experience may play a critical role in how well viewers are able 
to interpret glyphs. Many of the studies that have found advantages for using
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glyphs used participants with domain experience [101], while those that used novice 
participants have often found that glyphs are misinterpreted [120, 134]. On the 
other hand, numerous studies have shown that even experienced researchers fail to 
interpret error bars correctly, so there are clearly limits to the benefits of experience 
when interpreting glyphs [3, 24, 101]. The balance between familiarity and the 
potential for misinterpretation is a tricky one, but drawing more heavily on the 
cognitive science literature to investigate this issue could be useful for developing 
principled approaches to designing glyphs. For example, can we use information 
about visual perception to identify cases where glyphs are likely to be misleading? 
Can training on how to interpret unfamiliar glyphs overcome the advantages of 
familiar glyphs, and if so, how much training is necessary? 

14.6.3 Multiple Visualizations 

As discussed in Sect. 14.5, one approach to representing uncertainty is the creation 
of multiple visualizations. Once again, this is a technique that has primarily been 
tested in the geospatial domain. In GIS data and other types of maps, it can 
be particularly difficult to distinguish the data from the uncertainty information 
and to visualize the uncertainty information in a way that does not occlude the 
data. Researchers in this area have tested a variety of approaches to this problem, 
including side-by-side visualizations, overlays, toggling, flickering, and animation 
(see [81] for a review). While some studies have found benefits to dynamic displays 
that use flickering or animation [39, 99], participants often prefer static displays 
[1] and find flickering or animation to be annoying or too difficult to understand 
[7, 107]. Animations may increase the participants’ cognitive load if they are forced 
to remember and integrate information from different time points in the animation. 
This can be detrimental to task performance, as demonstrated by multiple studies 
that have found better performance for static displays than for animations [81]. 

Animations can also be more distracting than they are useful for understanding 
three-dimensional data [95]. However, at least one study has found that animations 
supported increased speed and accuracy for radiologists assessing volume render-
ings in a medical decision-making context [97]. Lodha and colleagues [95] also  
tested side-by-side views, although in this case the two views were showing different 
surfaces rather than a visualization of the data and a visualization of the uncertainty. 
They found that side-by-side views were adequate for identifying large differences 
between surfaces, but not for more subtle differences. 

Static side-by-side displays may be one of the more effective ways of represent-
ing uncertainty when occlusion is a concern. In the geospatial domain, side-by-side 
displays often show some data in one image and the uncertainty associated with the 
data in an adjacent image (cf. [1]). For many tasks, participants perform equally well 
when using side-by-side views as when using coincident (overlaid) views of data 
and uncertainty [1]. However, there is also evidence that people can have trouble 
integrating the data and the uncertainty if the uncertainty is presented in a legend or
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in an adjacent image. Integrating information across multiple images or text-image 
combinations places a burden on the viewer and his or her cognitive load, increasing 
the chances that the uncertainty information will be misinterpreted or ignored [36]. 

For 3D data, side-by-side displays have been used to show errors produced by 
integration algorithms in fluid flow models. This approach is effective if the errors 
are large, but subtle errors are much harder to detect when comparing two images 
[16, 95]. In this case, superimposing the images has been shown to work better, 
although that raises the issue of occlusion once again (Lodha et al., 1996). 

Interactivity can provide some of the benefits of multiple visualizations while 
mitigating some of the drawbacks. For example, viewers who are annoyed by 
a display that flickers between two or more different representations might be 
appeased if they can control when the information about uncertainty appears and 
disappears. However, when people are given the option of how to interact with the 
visualization, they may choose not to view the information about uncertainty at all, 
or they may struggle to manage the increased complexity of the visualization tool 
[9, 21]. Although interactivity has considerable promise for helping people to better 
understand uncertainty, there have been surprisingly few studies on how to design 
interactive visualizations that effectively convey information about uncertainty. 
What types of tasks and datasets benefit from interactivity and which do not? Are 
there methods of introducing interactivity that encourage people to grapple with 
uncertainty rather than ignoring it? How do the pros and cons of interactivity relate 
to human cognitive processing? Can we use aspects of cognition such as the limits 
of attention and working memory capacity to develop a scaffold for principled 
approaches to incorporating interactivity? 

14.6.4 Statistical Graphs 

Although we included some discussion of statistical graphs earlier in this section, 
they have some unique properties that warrant additional attention. Statistical graphs 
provide information about a dataset, including information about the variability in 
the data. For example, scientific papers commonly show the trends and variability in 
datasets using visualizations such as scatterplots, bar plots, box plots, violin plots, 
or line plots. Since these statistical graphs are so widely used, they have also been 
subject to a great deal of research investigating how different representations of the 
same underlying dataset can impact human comprehension. 

Statistical graphs are more abstract than many of the visualization types dis-
cussed above, so the forms that they can take are less constrained. They may 
represent multi-dimensional data that cannot easily be visualized in 2D or 3D space 
without the use of dimension reduction techniques. Thus, there is rarely an obvious 
visual metaphor that relates the data shown in statistical graphs to things that people 
are familiar with in the real world. 

When a dataset has three or fewer dimensions and a relatively small number of 
data points, scatterplots or dot plots can be used typically to show the variability
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of the data directly, with a symbol to represent each data point (cf. [84, 147]). 
This type of direct representation avoids many potential sources of cognitive bias. 
The symbols used to represent each data point can provide information about the 
uncertainty of that information. For example, imputed data, instances where missing 
data are replaced with a reasonable estimate, can be plotted using different symbols 
than data that were measured directly [84]. Cognitive studies have shown that people 
can quickly integrate and make judgments about scatterplots, even when multiple 
datasets are shown in one figure [20, 47, 129]. They can rapidly extract correlations 
and trends [32, 88, 106, 129] and make comparisons between different datasets or 
different classes of data points [47, 91, 92]. 

However, scatterplots are subject to cognitive biases of their own. Viewers 
consistently underestimate the correlation between variables [129], and they often 
use simple heuristics to make comparisons between datasets, such as judging the 
cluster with the highest overall point to have the highest mean value [29, 47]. 
Changes in the visual representation of a scatterplot can alter viewers’ estimates 
of the correlation between variables [32, 88], and changes in the size, shape, 
and density of clusters can impact viewers’ judgments about the clusters [38]. 
Furthermore, scatterplots are not a feasible visualization for large datasets or for 
datasets in which overplotting (multiple data points plotted in the same location) can 
obscure portions of the dataset. While there are a number of techniques to reduce 
visual clutter when large datasets are visualized (cf. [37, 136]), those techniques 
move away from direct representations of the data, introducing new layers of 
abstraction. This raises some of the same design challenges that are common for 
uncertainty visualizations: how should designers select abstractions that support 
human cognition without introducing confusion or biases? 

Other types of statistical graphs provide methods for abstracting away from direct 
representations of the data. 

Box plots were developed to provide a summary of a dataset at a glance, 
including its median, upper and lower quartiles, upper and lower extremes, and 
outliers [104]. An important drawback of traditional box plots is that datasets with 
very different distributions, such as a normal distribution and a bimodal distribution, 
can produce box plots that look identical [19]. Several researchers have proposed 
variants of the box plot that use color, shape, or shading to indicate the density 
of the underlying distribution [4, 19]. Similar approaches have been developed for 
bivariate box plots (cf. [133]). Violin plots, which encode the distribution of the data 
via the width of the bar [60], have been the most widely adopted variant of the box 
plot. See Fig. 14.3 for examples. 

Correll and Gleicher [24] found that changing the visual encodings of statistical 
graphs could improve viewer performance, even for members of the general public 
with no background in statistics. They recommend using encodings that are visually 
symmetric, such as violin plots, and visually continuous, such as gradient plots. 
These types of visual encodings reduce the cognitive biases that have been observed 
for bar plots and error bars. 

These techniques tie back to the implicit representations of uncertainty discussed 
above. For example, gradient plots manipulate visual attributes of the visualization,
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Fig. 14.3 The same data plotted as a scatterplot (top left), violin plot (top right), box plot (bottom 
left), and bar chart with error bars showing the mean standard error (bottom right) 

such as transparency, based on the statistical distribution of the underlying dataset. 
Other techniques, such as kernel density estimation, can be used to generate density 
plots that manipulate intrinsic visualization variables to emphasize the most certain 
information and de-emphasize the most uncertain information [41, 84]. 

As discussed above, error bars are extrinsic representations of uncertainty that are 
widely used in statistical graphs. While error bars have disadvantages, they have the 
advantage of familiarity, which can lead to better performance than manipulations 
of intrinsic attributes [29]. In the case of statistical graphs, the familiarity of the 
representation and the effectiveness of the visual metaphor being deployed are often 
in conflict. This is another area that warrants continued research. In particular, are 
there encodings that consistently support better comprehension of uncertainty for 
both scientists and lay people? Can training on newer methods of representing 
uncertainty in statistical graphs overcome the effect of familiarity for people who 
have considerable experience with creating and consuming bar charts? 

Finally, research questions related to the use of multiple visualizations also 
apply to statistical graphs. For many years, there have been calls to focus on the 
development of interactive statistical graphs (cf. [141]). Interactive visualizations
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have become relatively common in the media and can be very useful for guiding 
viewers to comparisons of interest (cf. [45]). However, interactive infographics 
or statistical graphs are still fairly rare in scientific publications. Printed papers 
must have static graphs, but online scientific communications could incorporate 
interactivity. What lessons can we draw from the use of interactive visualizations 
on news websites to apply to scientific communication, for both communications 
with peers and communications with the general public? 

In the realm of statistical graphs, hypothetical outcome plots (HOPs) represent 
a variant of the approach of using multiple visualizations to convey uncertainty 
or probability. As discussed above, HOPs have shown a great deal of promise 
for helping viewers to understand the variability or uncertainty in a dataset [117]. 
HOPs draw from a probability distribution multiple times and visualize each draw. 
Hullman et al. [67] showed that HOPs supported better reasoning about distributions 
than more abstract representations such as error bars and violin plots. Similarly, 
Kale and colleagues [77] showed that participants were better able to infer the 
underlying trend in a dataset when using HOPs than when using error bars or line 
ensembles. However, there were some circumstances in which participants struggled 
when using the HOPs, such as when estimating the mean of a dataset with high 
variance [67]. While dynamic displays of uncertainty in datasets can mitigate the 
cognitive biases that are induced by static representations, more research will be 
needed to understand the circumstances under which animated HOPs may produce 
biases of their own. 

An interesting direction for future research would be the application of a HOPs-
like approach to other types of data. There has been some work along these lines, 
such as developing HOPs that show different instantiations of a network distribution 
that has probabilistic edges [152]. However, the HOPs approach to representing 
uncertainty is different from the approaches that have typically been used for 
geospatial or flow data. HOPs have typically been used to represent the frequency 
of different outcomes, while related approaches for spatial data, such as flickering, 
animation, and side-by-side displays, typically show one visual representation of 
the data and another showing which aspects of the data have higher uncertainty than 
others. These two different approaches to showing uncertainty through multiple 
visualizations would benefit from direct comparisons between then. For example, 
can a HOPs-like approach be developed for geospatial data or 3D scientific data? 
Would that improve comprehension of uncertainty relative to other techniques that 
have been used in these domains? Or is the type of metaphor used by HOPs a poor 
fit for spatial data? These would be fruitful areas for future research. 

14.7 Discussion 

Uncertainty visualizations present thorny problems for designers and viewers, and 
data visualization researchers do not yet have a good grasp on which techniques are 
most effective and why. Researchers are struggling to make sense of the relatively
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small number of rigorous evaluation studies that have been done in this area, with 
the result the same groups of studies have appeared in review papers and taxonomies 
over and over [8, 15, 80, 99, 121, 125]. The present paper is yet another attempt at 
making sense of this literature and identifying common threads across domains. 
Recent work bridging visualization and cognitive science has begun to make more 
progress in elucidating why some uncertainty visualization techniques are more 
effective than others [45, 117]. In this vein, we have attempted to identify the 
uncertainty visualization techniques that are used most commonly for different types 
of data, which methods have been compared with one another, and which were 
found to best support human decision-making. 

Several common threads have emerged from this effort. First, and most impor-
tantly, the studies reviewed indicate that visual representations of uncertainty often 
improve comprehension and decision-making performance, so long as the way in 
which the uncertainty is expressed is a good fit to the participants’ task (cf. [72]). 
Of course, we do not know how many unpublished experiments have found that 
visualizations of uncertainty harmed human performance, but the fact that there 
are published studies across many domains and data types that found benefits to 
visualizing uncertainty indicates that it can be done successfully. 

The studies that demonstrated success point to a few important themes. First, the 
participants’ task matters. Visualizations that performed well provided support for 
the participants’ cognitive processes without overloading their cognitive resources. 
Although participants may prefer to ignore uncertainty information, visualizations 
can help people to understand uncertainty better and can push them to take 
uncertainty into account. The difficulty of the participants’ task matters as well. 
When the task is relatively easy, the way in which the uncertainty is represented 
may have little or no impact on task performance (cf. [6, 18, 82]). However, when 
the task becomes more difficult, the match between the task and the representation 
becomes increasingly important. 

Second, the participants’ experience matters. If a particular visual metaphor is 
common in a particular domain, it may be best to stick with that metaphor so as not 
to confuse domain experts. In domains where there are standard representations of 
error that are widely used (such as error bars in scientific publications) or where 
efforts have been made to formalize visualization approaches (such as GIS and 
cartography), paying attention to the existing conventions is particularly important. 
While newer visualization techniques might show better performance for novice 
viewers, they may have negative impacts on expert viewers and vice versa [7, 101]. 
However, as discussed in Sect. 14.6, there are cases (such as error bars) where 
the dominant visual metaphor for uncertainty is also widely misunderstood and 
misinterpreted, even by domain experts. This finding opens the door for additional 
research at the intersection of visualization and cognition to help find ways to 
address this problem, either through modification of visual cues or through training. 

Third, if a dataset is amenable to naturalistic metaphors for conveying uncer-
tainty, such as the metaphor of fogginess, those metaphors can be highly effective. 
However, visualization designers must ensure that the metaphor is implemented in 
a way that matches the viewers’ expectations [99, 138]. An important sidenote is
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that viewer preferences do not necessarily correspond to their performance, and 
mappings that viewers believe to be intuitive do not necessarily support better 
performance (cf. [34, 99, 113]). More empirical research is needed to explore the 
relationships between manipulations of visual cues and viewers’ interpretations of 
those cues across different tasks and data types. Specifically, we need more studies 
that use objective measures of task performance rather than just gathering viewers’ 
subjective opinions about different methods of representing uncertainty. 

Fourth, many of the studies reviewed here suggest that intrinsic mappings of 
uncertainty are often better for providing an overview of the uncertainty, which 
extrinsic mappings are better for providing details. In particular, glyphs can provide 
a great deal of detail, which might be preferable for domain experts or decision-
makers who need more than just an overview. However, it is also crucial that viewers 
are able to distinguish the data from the uncertainty and that their view of the data 
is not obscured by the information about uncertainty. While side-by-side images, 
animations, and dynamic displays can all help to address this problem, all can 
contribute to an increase in cognitive load for viewers. 

Finally, visualization designers need to be aware of unintentional perceptual 
effects that can arise in uncertainty visualizations, such as salient boundaries [126]. 
The presence of a visual boundary, whether intentional or unintentional, impacts 
cognition [117] and should be used with care. 

Thinking about data visualizations from the perspective of how well they support 
human cognition and decision-making has advantages for both designers and 
researchers. Commonalities in human perception and attention can provide insights 
into why some visualization designs are more effective than others, allowing for 
more generalizable evaluation strategies. There are also many unanswered questions 
about the impact of different visualization techniques on human cognition. This 
provides a wealth of opportunities for cognition researchers to advance our under-
standing of visual cognition while also having an impact on real-world problems. 
There are a growing number of collaborations between cognitive scientists and 
visualization researchers, adding to the growing body of literature in visualization 
psychology. Visualizations of uncertainty provide a particularly rich environment 
for these types of collaborations. There are many unanswered questions about how 
people process and make sense of information about uncertainty, and many domains 
where effective visualizations of uncertainty are needed. Although some uncertainty 
visualization techniques have been compared and evaluated, there is much work left 
to be done. 
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Chapter 15 
Analysis of Sensemaking Strategies: 
Psychological Theories in Practice 

Margit Pohl, Johanna Doppler Haider, Patrick Seidler, Neesha Kodagoda, 
and B. L. William Wong 

Abstract Sensemaking processes are regarded as a relevant conceptualization of 
how users interact with information visualizations. Nevertheless, there is little 
research about the specific sensemaking strategies users adopt when they work 
with visualizations. Psychological theories about human thinking and reasoning and 
theories from the area of graph comprehension are relevant approaches that should 
be taken into account when investigating sensemaking processes with information 
visualizations. In these areas, there is more detailed research about problem-
solving strategies (e.g., in mathematical problem-solving) that could be relevant for 
information visualization. We provide an overview of interesting approaches and 
in which way they are relevant for interactions with visualizations. We describe 
an exploratory investigation with 18 computer science students performing a 
realistic task using a visual analytics system. The result of this investigation was 
a set of eleven sensemaking strategies. We discuss whether these strategies can 
be generalized across different visualizations and compare the results to results 
from other studies we have conducted in this area. We also present examples for 
recommendations based on such research. 
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15.1 Introduction 

In information visualization and visual analytics, the issues of sensemaking and 
insight generation have been addressed occasionally [3, 21, 29, 34]. Nevertheless, 
we still have no full understanding of the cognitive processes taking place, while 
users interact with visualizations. Some approaches in cognitive psychology may 
help to clarify open questions in this area. Making sense of visualizations may be 
seen as a problem-solving activity. This has already been suggested by Mayr et al. 
[23]. 

Research on problem-solving has investigated problem-solving processes in 
great detail and has shown what kinds of strategies are used in such processes 
[11, 22, 25, 39]. In this context, the relationship between the usage of more general 
strategies and domain-specific strategies has been discussed. While much research 
on problem-solving has been conducted in laboratories, it has been argued that 
there might be differences between reasoning processes in the laboratory and “in 
the wild” [41]. Research in everyday thinking and reasoning has indicated that 
people use a wide variety of strategies, and the strategy usage is highly dependent 
on domain knowledge [41]. Research in graph comprehension has addressed 
the topic of different levels of insight generation when interacting with graphs 
[8]. Naturalistic decision-making [14–16] has been discussed in the visualization 
community already, and some research has been done based on this approach [18]. 

These approaches are also relevant for the design of visualizations. It has already 
been argued by visualization researchers that a detailed analysis of the interaction 
processes of users with visualizations is necessary [28]. A result of such research 
could be the identification of strategies or heuristics that users adopt. These strate-
gies (or a combination of them) can be more or less effective. Design of visualization 
interfaces could be adapted to more effective strategies. Research on everyday 
thinking and reasoning has indicated that people use strategies very flexibly [41]. 
This flexibility has to be taken into account also in the design of visualizations. 
The everyday thinking and reasoning approach also emphasizes the importance 
of domain knowledge. The importance of background knowledge is commonly 
accepted in the visualization community, but it is not entirely clear how this should 
be reflected in the interface design. The theory of graph comprehension [8] has 
indicated that novices tend to create more simple forms of insights than experts. It 
is necessary to identify those types of visualizations that support more simple or 
more complex types of insight generation. In addition, all these approaches may 
be used to inform teaching the understanding and creation of visualizations and to 
increase visualization literacy in general. 

In this chapter, we want to provide a brief overview of these theories and then 
describe a study we conducted that can show the relevance of the application of 
these theories. The main goal of this chapter is to identify sensemaking strategies 
adopted by users of visualizations. In addition, we try to show how existing theories 
of problem-solving and cognitive strategies can be applied in this kind of research.
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15.2 Related Work 

In cognitive psychology, there is considerable amount of research on how people 
solve problems. Simon and Newell [39] and Newell and Simon [25] conducted 
influential research on problem-solving. They assume that there is a large problem 
space with all possible states that can be reached during the problem-solving 
process. It is necessary to reduce the number of possible states to make this process 
manageable. They suggest to use heuristics to achieve this. There are some general-
purpose heuristics that can be used (e.g., hill-climbing or means-end analysis) [31]. 
Hill-climbing describes a process where problem-solvers move forward one step at 
a time, and every step aims to get him or her nearer to the goal. Occasionally, this 
forces the problem-solver to do some backtracking. Means-end analysis is a more 
sophisticated strategy. The problem-solver analyzes the current state and the goal 
state and tries to identify actions that reduce the differences between those two. In 
this context, the problem is split into subproblems. Other general-purpose heuristics 
that have been described in the literature are “Less is (sometimes) more” or the 
“Take the Best” heuristic [10, 11]. “Less is (sometimes) more” means that human 
beings can be overwhelmed by information, and, therefore, sometimes prefer to rely 
on the most relevant information items and ignore the rest. This heuristic is relevant 
for information visualization because users often are overwhelmed by the amount of 
information they get. Designers of visualizations have to take care to offer as much 
information as necessary, but not more. “Take the Best” tries to balance the search 
for the best solution with restrictions in time. Human beings often fairly quickly 
choose alternatives that satisfy their needs to a certain degree, although they know 
that this alternative is maybe not the best one (satisficing). 

There is some overlap between the concept of heuristics and the concept of 
strategies. A heuristic is usually a rule of thumb that sometimes works uncon-
sciously, while strategies are seen as conscious step-wise processes, although there 
is some controversy about this definition [22]. Lemaire and Fabre [22] also discuss 
the relative importance of general problem-solving strategies that are valid across 
domains and specific problem-solving strategies. They point out that novices tend 
to adopt general problem-solving strategies as long as they lack relevant domain 
knowledge. It is an open question whether users of visualizations rather use general 
strategies or domain-specific strategies. In our research, we found that users of 
information visualizations use both general and domain-specific strategies. It is, 
however, not clear which of these approaches is more successful. 

Roberts and Newton [32] argue that people often do not use the best strategy 
because it is not available to them. Nevertheless, good strategies can be learned. 
Recently, visualization literacy has been discussed within the visualization commu-
nity [1, 21]. It has been pointed out that many people lack visualization literacy [2]. 
Analyzing strategies of how people infer insights from visualizations and comparing 
them to successful strategies can help to inform the teaching of visualization literacy 
and identify problems with the visualization that might be reduced by an appropriate 
design. Roberts and Newton [32] point out that there is some variability in strategy
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selection because different individual strategies may be appropriate for different 
parts of a problem. Strategy selection is also context dependent. 

There is also some interesting research in the area of “Everyday Reasoning” 
[9, 41]. Woll [41] argues that there is some difference between everyday reasoning 
and formal reasoning. Context and background knowledge are highly relevant 
for everyday reasoning. Scribner [37] conducted research about strategies used 
in everyday reasoning and found that people are highly flexible in their usage 
of strategies. They tend to adapt their strategies to the situation at hand. This 
conforms to research done by Lave [20] who argued that formal processes learned 
at school are often not applied in practice. She found out that mathematics used in 
supermarkets or other similar contexts differs from formal mathematical procedures. 
In our research, we also found that in many cases there is not one optimal cognitive 
strategy but several strategies that can be used flexibly. 

Evans [7] also points out that there is a difference between the strategies used in 
everyday problem-solving processes and those strategies used in rational decision-
making based on principles of formal logic. He assumes that there are two systems 
of decision-making, one that is fast and often unconscious and another one that is 
slow, deliberative, and analytic (dual-process model). In everyday decision-making 
processes, people usually only consider one alternative at a time and are often 
content with a decision that reaches a certain threshold (satisficing). Padilla et al. 
[27] showed that there is evidence that the dual-process model is also valid for 
interactions with visualizations. Based on this idea, they developed an integrated 
cognitive framework for studying the cognitive processes underlying the use of 
visualizations. 

Much of the research concerning strategy use has been conducted in the 
educational domain [4]. One of the major issues discussed in this context is whether 
there is a relationship between strategy use and learning outcomes. There is some 
indication that activities that students engage in while they learn are a better 
predictor of learning outcomes than their abilities or other individual differences [6]. 
Nevertheless, the relationship between strategy use and performance is still not very 
well-understood [4]. In our research, we also addressed the issue of the relationship 
between strategy use and performance. We found some weak relationship, but we 
would like to point out that we looked at very specific strategies related to the 
interaction with visualizations. 

Another approach that also investigates how users interact with visual material 
is graph comprehension. The goal of graph comprehension is to clarify how people 
make sense of graphs and how they draw inferences from them [8]. Viewers are 
supposed to develop a coherent mental model of the application domain represented 
by graphs. Typical strategies that are adopted by viewers are connecting elements 
of a graph or predicting future behavior of the systems represented by the graph. 
Research in graph comprehension is also relevant for educational issues. The aim of 
much of the research in that area is to improve graphs, so that students will be better 
able to gain knowledge about the domain represented in the graph. 

Research on graph comprehension, e.g., Kosslyn [19], Tversky [40], deals with 
sensemaking processes using visualizations. Friel et al. [8] developed a model
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consisting of three different levels: (1) reading the data (i.e., extracting data, locating 
data), (2) reading between the data (i.e., finding relationships, integrating data), 
and (3) reading beyond the data (i.e., extrapolating from the data and generating 
hypotheses). This model conforms to our research findings concerning insights. 
We found low-level insights reporting simple facts without explanations, moderate 
insights including explanations, and high-level insights including recommendations 
based on new hypotheses. 

Probably, the most influential theoretical approach for the study of sensemaking 
in the visualization domain is the data–frame model developed by Klein et al. 
[14, 15]. The data–frame model is inspired by the approach of naturalistic decision-
making (NDM). NDM aims to model decision processes in realistic situations by 
domain experts. Much of the research concerning problem-solving strategies is 
conducted using the so-called puzzle problems. Using puzzle problems helps to 
achieve easily controllable experimental conditions. Research under realistic con-
ditions, on the other hand, trades validity and practical relevance for experimental 
rigor. The data–frame model assumes that people develop schematic representations 
of the phenomena they encounter in their daily lives called frames. These frames 
are dynamic models that can be elaborated, questioned, or rejected. Klein [13] 
later on extended his model to include specific sensemaking processes: The Triple 
Path Model of Insight that explains how scientists gain their insights. This model 
incorporates three processes: (1) Connection, (2) Contradiction, and (3) Creative 
desperation. When people connect information, they try to identify patterns or find 
relationships between elements. Contradiction implies that people are confronted 
with information that is contradictory and does not allow to form a coherent 
mental model. Creative desperation happens when people cannot make sense of 
the information they encounter. The model of Klein et al. has already been used for 
the evaluation of visualizations before (see, e.g., Kodagoda et al. [18]). 

The work described in the following is based to a large extent on Klein’s models 
using the coding scheme of previous work [5] as a starting point. Refinements and 
changes on the coding scheme were made to create more precise and selective 
categories. 

These approaches are, to a certain extent, related to each other. Some approaches 
within the research on problem-solving address problems in ill-structured domains 
when neither the route to a solution nor the solution itself can be defined easily 
[23]. In such cases, heuristics are often applied [11, 22, 25, 39]. Some of them 
also conceptualize problem-solving as an activity happening in realistic situations 
[14–16, 41]. All approaches we will describe focus on cognitive activities that are 
exploratory and dependent on previous knowledge. Especially research on cognitive 
strategies [4, 7] and on graph comprehension [8] is often motivated by issues 
from educational research where previous knowledge and level of expertise play 
an important role. Visualizations often represent data in ill-structured domains, 
they require the generation of insights in realistic situations, interaction with 
visualizations often relies on expertise of the users, and exploratory activities 
are essential for gaining insights. Approaches already used in the visualization 
community are partly based on theories mentioned above, especially Klein et
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al.’s data–frame theory [14, 15] that was very influential for the adoption of the 
sensemaking approach. 

15.3 System Description 

The VALCRI system was designed to support and augment the intelligence analysis 
process based on user requirements from focus groups with 20 intelligence analysts 
using Cognitive Task Analysis [35] and one-to-one interviews with seven intelli-
gence analysts using the retrospective interview technique Critical Decision Method 
[12, 17]. The goal of the system is to support intelligence analysis in police forces 
to identify criminal offenders. It contains several visualizations showing place and 
time of crimes, the modus operandi, and possible relationships between offenders. 

The system supports the analysis of events happening in space and time through 
multiple visualizations that can be used as filters in connected views. The results can 
be explored via ten visualizations: Search, Timeline, Map, Bar Chart, List, Statistical 
Process Chart (SPC), Space Similarity Selector (S3), Clusters, Crime Classification 
Table (CCT), and Crime Cards. The timeline represents how many crimes were 
committed in a period of time. The map shows aggregated crime event locations 
in an overlaying grid for results containing more than 300 events. The bar chart 
provides a distribution of different characteristics of those events, e.g., the offence 
type is shown per default, see Fig. 15.1. The SPC shows the mean crime rate of 
a selected time period and its standard deviation to detect anomalies in the data, 
such as very large or sudden shifts. Intelligence analysts interpret various types of 
deviation from the mean over consecutive points typically as a new trend, which are 

Fig. 15.1 Multiple, interactive, and connected visualizations provide insight on spatiotemporal– 
thematic event data. Search queries can be run in parallel (search 1 and search 2) to compare 
different result sets or to use different perspectives on a large canvas. The standard views are a 
timeline (1), a map (2), and a bar chart (3), which show the data on different aggregation levels; 
The cluster overview in search 1 on the left shows more than 300 events; In search 2 on the right, 
detailed events are shown with overlaid temporal information in a map based on a selected time 
frame in the timeline
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encoded as turquoise points in the chart. Outliers are highlighted with red crosses. 
The CCT summarizes the information from the crime reports showing all features in 
columns (e.g., time, crime type, etc.) and crimes per row. Clusters can be visualized 
via the S3 and cluster view. The S3 view groups crimes into clusters based on their 
similarities, providing controls for the k-means algorithm to, e.g., define the number 
of clusters. Each crime report is also depicted in a summarizing crime card. Finally, 
multiple visualizations can be grouped into lists. 

15.4 Study 

We analyze the use of multiple visualizations with regard to insight and sensemaking 
to extract strategies participants employ while working with the VALCRI system 
to make sense of information provided by the visual analytics tool. We expect 
participants to use different visualizations to answer different kinds of questions 
and follow up on investigational hypotheses during an analytical task. Our research 
questions are: 

• R1: How do users generate insights with intelligence-specific visualizations and 
which visualization tools do they use to achieve this? 

• R2: Which sensemaking strategies do participants use most? 
• R3: Are sensemaking strategies related to the number and/or quality of insights? 

To answer them, we observe sensemaking strategies and insights during an 
analytic task. The outcome of the analytic task can be compared in terms of the 
number of insights and depth of intelligence analysis, i.e., the quality of insights 
gained. 

15.4.1 Methodology 

We conducted an extensive think-aloud study for the formative evaluation of a visual 
analytics prototype. For the purpose of analyzing cognitive processes, the think-
aloud method proved to be useful [30]. An essential part of such an analysis is 
the development of an appropriate coding scheme to get systematic results from 
these protocols [33]. The development of such coding schemes can either be based 
on the literature (top-down) or on the repeated analysis of the protocols (bottom-
up). Frequently, both approaches are combined. The development of such coding 
schemes can take place in the context of a qualitative content analysis [24, 33, 36]. 
The coding scheme for sensemaking strategies was developed in an iterative 
approach combining bottom-up and top-down elements, in which two authors 
studied the content together and refined a coding scheme to eleven content-specific 
sensemaking codes through repeated in-depth discussions. Consequently, the entire 
think-aloud protocols were coded with these categories. A second evaluator coded
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two minutes each from the first and the second half of the screen capture at random 
(i.e., 12.4% of the protocols). The result of the coding process was the identification 
of 11 sensemaking strategies. The sensemaking strategies were analyzed by their 
occurrences using two measures: 

• Frequency: How often is a sensemaking strategy used? 
• Duration: How long does a sensemaking strategy take? 

Our research questions with respect to insight were addressed by looking at three 
aspects: 

• Number of insights: How many insights could be gained during the analysis? 
• Quality of insights: On which level are the reported insights? How many 

conclusions can be made for future actions? 

We counted the number of these insights and assessed the quality of insights 
based on the following criteria: whether the participants provided a textual expla-
nation of their insight and whether the text was only an explanation or contained a 
recommendation in addition. 

15.4.2 Participants 

We recruited eighteen computer science students with a Bachelor’s degree (5 
Female, 13 Male; .N = 18). Participants were trained in strategic analysis goals 
and in using the system with an introduction and a video tutorial explaining the 
context as well as specific terminology. No color vision impairments were reported. 

The duration of the experiment was 100–120 min with two short breaks after one 
hour and just before a questionnaire about their experience. The study consisted of 
a training task, an analysis task, and a short, semi-structured interview to follow up 
on issues that arose during the analysis. Participants worked on the analysis task for 
45–55 min. 

15.4.3 Dataset and Task 

The dataset comprises more than 1.1 million records of burglary crime in the time 
frame of three years in the United Kingdom. The records describe property stolen 
and damaged as well as people affected by and associated with the crime. 

Analysis Task: “Analyze offences that occurred between April 1st and July 31st 
2017 and prepare a short report that summarizes your findings.” 

Participants should report insights, assessing relevant crime data by time, 
location, and crime type. We think that the task implicitly defines the insights 
that should be the outcome. This makes it more obvious how insights should be 
measured. In our case, an insight is a policing recommendation accompanied by
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one or two screenshots showing the visualization(s) that helped the participants 
to get that insight. This screenshot was in most cases accompanied by a written 
explanation. 

15.5 Results 

The main goal of the investigation was to identify sensemaking strategies. This 
was a qualitative research process. The coding process in such a study is very 
time-consuming. Therefore, we only used a relatively small sample size. We also 
quantitatively analyzed some results, but these quantitative results have to be 
checked in future research with larger samples. 

The analysis of sensemaking strategies during the task reveals differences in the 
insight generation process (Research question R1). A detailed description of the 
sensemaking strategies observed (Research question R2) including coding criteria 
and exemplary statements is provided in the following. Insights that got documented 
during the analysis by the participants and their relation to the analysis processes 
help to identify more successful strategies (Research question R3). 

15.5.1 Sensemaking Strategies 

The coding scheme includes eleven sensemaking strategies, which showed high 
inter-coder reliability (Cohen’s Kappa .κ = 0.871, .N = 115). The agreement of 
two coders was high for all strategies, except the scarce Coincidental Aha, compare 
Table 15.1. We also add statements by participants (P1–P18). The strategies are 
described in the following: 

Table 15.1 Frequency of 
codes (sensemaking 
strategies) assigned by the 
first experimenter and 
agreement rate of the second 
experimenter 

Code Frequency Agreement 

Pattern 286 93% 

Trend 158 90% 

Profiling 121 86% 

Elimination 116 85% 

Storytelling 75 100% 

Elimination incl. trend 57 100% 

Creative desperation 33 100% 

Contradiction 26 100% 

Verification 25 75% 

Pattern incl. profiling 15 67% 

Coincidental Aha 12 50%
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15.5.1.1 Pattern: Looking for Similarities Across Several (Groups of) 
Actors 

Similarities in our data were crime types, criminals’ time intervals (when and why 
actors were active), direct and indirect relationships, etc. 

Example statements from the participants are: “So what I am interested in is how 
they got in, window or door [looking at clusters in CCT] (P4),” and “A lot of them 
are unsolved [map] (P15).” The definition of this strategy is based on the work of 
Klein [13]. 

15.5.1.2 Trend: Looking for Trends in the Data 

Attempt to identify the change over time, here, detect an increase or decrease in 
criminal activity. Criteria for coding were: (1) Discussing crime rate change in 
timeline and (2) Comparing development over certain periods of time. 

Example: “In this time period it [crime rate] goes up (P2).” 
The definition of this strategy is based on the work of Klein [13]. 

15.5.1.3 Profiling: Characterizing Crimes or Criminals Based on Features 

Features in our data were links (identify gangs), crime types (what type of crimes 
is most critical), or time intervals (when and why actors were active). Criteria for 
coding were: (1) Inspecting specific individual, group of actor(s) or crime, and (2) 
Considering various aspects about suspects and going into detail, which may contain 
trend assessment. Profiling aims at details, not at comprehending relationships and 
trends. It is a necessary activity but does not support the ability to go beyond the 
data, as defined in the model of Friel et al. [8]. This is a domain-specific strategy. 

Examples: “I have a crime with a victim, I will have a look at [the victim], maybe 
he was even mugged twice (P16),” and “I will read the description [of a crime report] 
(P18).” 

15.5.1.4 Pattern Incl. Profiling: Combination of Pattern and Profiling 

Criteria for coding were if the activity could not be coded separately, e.g., comparing 
crime reports with each other. Our aim was that codes should be mutually exclusive. 
In a few cases (e.g., in pattern and profiling), this was not possible. Therefore, we 
introduced a combination of two codes. 

Example: [putting several crime reports next to each other] (P18)
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15.5.1.5 Elimination: Generating New Understanding by Eliminating 
Data Considered as Not Relevant 

The activity of filtering out data that do not fit or are not interesting. 
Example: “I will select burglary dwelling in the bar chart [which adds a filter on 

the crime type] (P10).” 

15.5.1.6 Elimination Incl. Trend: Reducing the Search Space Due to Time 

Reducing possibilities that do not fit a temporal requirement. 
Example: “I will look at 16th July (P10).” 

15.5.1.7 Storytelling: Constructing a Story by Explaining the Behavior 
of Crimes and Relationships 

The observations within the data were given meaning by using one’s experience or 
imagination to add information that subjectively makes sense, which followed often 
after profiling. Criteria for coding were: (1) Added information that is not visibly 
obtained from the data and (2) “Made-up” or subjectively enhanced information 
depending on the previous life experience of the participants. 

Example: “People come home from the Easter holidays, kids go back to school 
and parents work and then we have all the dwellings (P2).” 

This category is based on the work by Segel and Heer [38]. 

15.5.1.8 Creative Desperation: Not Knowing What to Do Next and the 
Feeling of Being Stuck in an Impasse 

Expressing to be stuck and to not know how to continue. 
Examples: “Now I am not sure of what best to look for (P4),” and “At the moment 

I am a bit at a loss what I could try else (P9).” 
The definition of this strategy is based on the work of Klein [13]. 

15.5.1.9 Verification: Consulting Both Representations for Verification 

Looking up information in another visualization with the intent to verify results 
from the analysis. 

Example: “I suppose I can see this here [in this visualization] as well (P1).”
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15.5.1.10 Contradiction: Realizing a Mismatch of What Was 
Hypothesized 

Noticing contradictory information and that previous thoughts or assumptions were 
not right. Coding criteria: Realization of contradictory information of what was 
assumed to be true.  

Examples: “I don’t see a clear pattern as I would expect from . . . (P3),”  and  “Now  
they don’t seem to be connected [anymore] (P16).” 

The definition of this strategy is based on the work of Klein [13]. 

15.5.1.11 Coincidental Aha’s: Seemingly Coincidental Insights That Are 
Not Conscious 

This activity was coded if it was not clear why an action was taken, or where a 
new idea came from. The insights are not based on structured, conscious reasoning 
processes. 

Examples: “Ah! That’s a good cluster (P3),” and “Ah, that’s interesting (P13).” 
The definition of this strategy is based on the work of Klein [13]. 

15.5.2 Reported Insights 

We asked participants to report their insights in a tool of their choice (MS 
Word/PowerPoint) using screenshots to capture the state of the tool when an insight 
was gained and annotations for explanation. It was up to the individual what to 
report, and no minimum length per explanation was required. The task description 
suggested to include time, location, and crime type for a recommendation. We 
analyzed the screenshots to see which visualizations are included to convey an 
insight and the text descriptions to assess the insight quality. In total, 89 insights 
were reported using 1.7 visualizations per insight on average. Two thirds of the 
participants reported more than three insights. One insight was the minimum and 
eleven the maximum. We grouped the participants according to the number of 
insights they produced (few, moderate, many). The participants are spread evenly 
among those groups (6 participants in every group). Few insights ranged from 1 to 
3, a moderate number of insights from 4 to 6, and many insights from 7 to 11. 

We evaluated the quality of the insight reports by assessing the depth of the 
given recommendation. Low-level insights are statements about single facts, such 
as crime rates at certain dates shown via screenshots. Moderate reports describe 
possible connections between data. They are used as explanations for observed 
phenomena. These connections or patterns are used to develop hypotheses. High-
level insights are conclusion that can be drawn from discovered problematic crime 
scenes. A high-level insight report includes at least one policing recommendation.
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This coding scheme is based on the three-layered model developed by Friel et al. 
[8]. 

15.5.3 Employment of Strategies and the Number of Insights 

We identified Looking for Patterns as the predominant strategy in our evaluation, 
coded twice as much as most of the other strategies. This activity includes 
comparing characteristics of crime events, such as location or offence type, and 
often describes manual clustering. Hence, participants were mostly looking for 
similarities within crimes. The second most frequent strategy Looking for Trends 
is similar to Looking for Patterns in that connections or similarities are perceived. 
The task description contained much temporal information, such as bank and school 
holidays, which were utilized by all participants during their analysis. In contrast, 
the specifications of the burglary type and town were sometimes disregarded. The 
offence type was disregarded in eight cases and the fictional town in five cases. 

There is a difference in how long the individual strategies were used. We 
measured how long the strategies were employed during every occurrence, compare 
Fig. 15.2. Patterns incl. Profiling took longest with 48 s, i.e., reading crime reports 
is a very time-consuming strategy. Participants searched longer for Trends than, e.g., 
for Patterns or Verification. Profiling and Patterns incl. Profiling took longer than 

Fig. 15.2 Relative duration (sec) per sensemaking strategy in the order of strategy frequency. 
Looking for patterns was used most often and moderately long, while Coincidental Aha’s could be 
observed as short moments, occurring least often
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looking for Patterns. Our results further confirm that the Aha moment is a quick 
process and it turned out to be a shorter moment than the one of a Contradiction, 
realizing that something does not fit. 

We analyzed the relation of sensemaking strategies to the number of reported 
insights. The number of employed strategies is moderately associated with the 
number of reported insights (Pearson’s .r = −0.441, p = 0.066). Participants 
who reported more insights in general used fewer strategies. To follow up on our 
research question if sensemaking strategies are related to insight (R3), we grouped 
participants into three equally sized groups by the number of reported insights. 

Participants reporting the smallest number of insights used the Profiling strategy 
the most. A Kruskal–Wallis test revealed a significant difference in the use of 
Profiling (.χ2 = 6.106, p = 0.0473) across three different groups (Group 1: 1–3 
insights, .n = 6; Group 2: 4–6 insights; .n = 6, Group 3: 7–11 insights, .n = 6). Post-
hoc pairwise comparison of groups using a Bonferroni adjustment revealed that the 
difference is significant only between Group 1 and Group 3 (.p < 0.05) with a large 
effect size (.r = 0.58). Many insights were reported when Trends and Patterns were 
used (compare Fig. 15.3). It is particularly interesting that participants with few 
insights in absolute numbers (Group 1) use the strategies of Verification, Creative 
Desperation, Coincidental Aha’s, Contradiction, and Pattern incl. Profiling. This  
indicates that all these strategies, not only Creative Desperation, are related with 
struggle and a lack of a systematic approach. The (coincidental) Aha moment, for 
example, sometimes seems to indicate a contradiction that participants were not 
completely aware of. 

Fig. 15.3 Number of 
insights: Pattern and Pattern 
incl. profiling led to relatively 
few insights; Trend and 
Storytelling were used most 
when many insights got 
reported
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Fig. 15.4 Insights quality: Pattern and Profiling show a clear tendency of leading to low-level 
insights; Higher-level insights were gained using Trend and Verification 

15.5.4 The Quality of Insights 

A qualitative analysis reveals that applying fewer strategies, and, therefore, spending 
more time on one strategy, yields better insights. 

The correlation between the number of strategies and the assigned insight quality 
is, however, not significant (Pearson’s .r = −0.454, p = 0.058). 

Trends were assessed more often in the better groups (moderate- and high-level 
insights) than in then low-level group. Patterns and Profiling, on the other hand, 
were more often used in the low-level insight group than in the moderate- and 
high-level insight group. Participants with high-level insights verified the most. 
The distribution of mean usage is shown in Fig. 15.4. Pairwise comparisons using 
Wilcoxon rank sum test showed significant differences between high- and low-level 
insights through Profiling (.p < 0.05) with a large effect size (.r = 0.73) and between 
moderate- and high-level insights through Verification (.r = 0.57). The remaining 
strategies were used more equally between the groups. 

15.6 Discussions 

We observed eleven sensemaking strategies during an explorative analysis task 
in the domain of criminal intelligence analysis. The analysis of strategy choices 
indicates that concentrating on fewer strategies leads to more hypotheses and higher-
level insights. This does not imply that users should adopt as few strategies as 
possible. Nevertheless, we could observe that participants who changed strategies 
very often were confused and tried out different strategies arbitrarily. One indication 
of this behavior is that the time used for each strategy is very brief. Looking 
for connections in the data, i.e., patterns, was the predominantly used strategy. It 
was, however, less beneficial for insight generation than we assumed. The tools
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seem to support Looking for connections (patterns) better than Looking for trends. 
Coincidental Aha’s occurred rather seldom. 

The connected views in the system allowed to look at the data from different 
perspectives without further effort, i.e., without the need to repeat queries. This 
feature was appreciated and used often in the context of testing hypotheses. We 
could observe that the Verification strategy performed significantly better than the 
Profiling strategy in our system. Verification was used by participants who generated 
more hypotheses and consequently validated them more by using another view. 
Participants who did not formulate many hypotheses could not follow them up with 
Verification. This indicates a guideline for the design of visual analytics systems, 
so that the process of Verification is supported to a greater extent and, thus, to 
support the insight generation process. From the literature on cognitive biases, we 
also know that verification can help to overcome such biases [26]. Participants 
who concentrated on the Profiling strategy, on the other hand, tended to focus on 
details and could not create more general recommendations. The quality of their 
insights was, therefore, not as high. This result further suggests that visualization 
systems should rather emphasize looking for connections, patterns, and trends than 
identification of single events. 
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